
Notes For “Notes On “Notes” ”

Richard P. Gabriel

Outside the window,
next door,
a shovel scrapes along the surface
of concrete and I’m guessing
something sloppy is happening.

Richard P. Gabriel, lines from Clinical Locution

[This short note is a prolegomenon to a longer, more thorough essay on my experiences trying to reproduce
Christopher Alexander’s Indian Village design results as presented in “Notes on the Synthesis of Form”
and “The Determination of Components for an Indian Village” -rpg]

I first heard of Christopher Alexander around 1990; I started with “The Timeless Way of
Building,” dipped into “A Pattern Language,” absorbed “The Oregon Experiment,” moved
to “A Foreshadowing of 21st Century Art: The Color and Geometry of Very Early Turkish
Carpets,” then I got pre-publication photocopies in 1996 of the four volumes of “The
Nature of Order.” In the early 1990s, Alexander started to become popular with software
developers, and I wrote a series of essays about his work for my column in The Journal of
Object-Oriented Programming; these essays turned into a book, and Christopher Alexander wrote
its Foreword. Later I supervised his work on the Gatemaker program.1

“Notes” was among the last books of Alexander that I read—around 2015. Unlike some
computer scientists who loved his concept of misfits and his algorithmic approach to design
modularity, I considered this formalism non-Alexandrian, and therefore a distraction. But so
many people talked about this book that I felt I needed to read it to be a complete
Alexandrian scholar.

I was intrigued by the idea hinted at that a program written around 1960 could solve as
complex a problem as the Indian Village redesign / rebuild—the “Worked Example”
reported in the Appendix to “Notes.” The essential problem was to take a set of design
“requirements” (141 of them), a set of interactions among them (about 1400 of them), and
partition them into groups that represent coherent design subtasks (more or less) or
‘components.’ Alexander’s approach was to create a ‘goodness’ measure that would
determine (numerically) how good a partition was. Then the idea was to generate disjoint
partitions and t es t them using this measure—computer scientists call this algorithmic search
technique “generate-and-test.” The “Notes” Appendix included a pretty decomposition of
the problem.

I tried to reproduce Alexander’s results. I was immediately confused by the many clerical-like
errors in the raw data supplied in the Appendix and the odd mathematical approach he took

																																								 																					
1 https://www.youtube.com/watch?v=o8b7ZBWGmu4

to creating his goodness measure. The clerical errors2 and sketchy definitions of terms made
interpreting the apparently straightforward goodness measure difficult. Moreover, “Notes”
did not contain a direct statement that the program hinted at actually produced the presented
decomposition.

The references in “Notes” mention two research reports that seemed to promise
explanations: I call them “HIDECS 2”3 and “HIDECS 3.”4 I was unable to obtain them
until long after the start of my investigation.

The problem to be solved is essentially the problem of cohes ion and coupl ing , a pair of
technical characteristics of programs in modern software modularity: it is important to
gather together programming “concerns” that strongly belong together (cohesion) while
isolating less strongly binding concerns (coupling). One way to think about it is that the
members of a family do a lot of things together (cohesion) while members of distinct families
don’t do as much together (coupling). These modern concepts of cohesion and coupling were
(likely) not available to Alexander in 1959 in this exact form—that is, with these names.

In addition to trying to decipher Alexander’s approach, I tried several now-classical
algorithms: K-Means clustering, Silhouette clustering, Karger’s algorithm, and several of my
own devising. For generate-and-test I used dynamic programming, greedy algorithms,
simulated annealing, genetic programming, and some simple hill-climbing techniques. None
worked well enough to come close to reproducing the decomposition in “Notes.”

After many failed tries at reproducing the results in “Notes” I finally obtained the two
HIDECS reports as well as a version of the HIDECS 2 program transliterated into Python.5
At the same time, I obtained a paper entitled “The Determination of Components for an
Indian Village,”6 in which Alexander shows a slightly different goodness measure from the
one in “Notes” and states directly that “minimization according to this function has been
programmed for the IBM 7090. It is this function which gave the decomposition of the
village problem that follows.” The decomposition that followed was exactly the one in
“Notes.”

Of the 50 errors in the interactions table, 30 involve requirement 33: “Fertile land to be used
to best advantage.” The errors are that some requirements list asymmetric interactions. That
is, whenever we see a statement like “33 interacts with 56,” we (and Alexander’s algorithm)
expect to see “56 interacts with 33.” The key to Alexander’s mathematical analysis of
complex decomposition problems and the goodness measure he creates is counting the
number of links between sets of requirements. Before I had the source code for his program,
																																								 																					
2 There are either 1383 interactions or 1433, depending on how you treat the errors. In the HIDECS 2 report,
Alexander makes it clear he used 1383, regarding the 50 others as essentially cardpunch errors.
3 Christopher Alexander and Marvin Manheim, “HIDECS 2: A Computer Program for the Hierarchical
Decomposition of a Set with an Associated Graph,” M.I.T. Civil Engineering Systems Laboratory Publication
No. 160 (Cambridge, Mass., 1962).
4 Christopher Alexander, “HIDECS 3: Four Computer Programs for the Hierarchical Decomposition of
Systems Which Have an Associated Linear Graph,” M.I.T. Civil Engineering Systems Laboratory Research
Report R63-27 (Cambridge, Mass., 1963).
5 https://gitlab.com/Zenbagailu/hidecs-2-python
6 In Christopher Jones, Conference on Design Method, Pergamon, 1963. https://beautiful.software	

these errors made it hard to understand his analysis and therefore his goodness measure.
Such errors are not uncommon in his early papers. While doing a close reading of an earlier
paper of his—“A Result in Visual Aesthetics”7—I noticed a handful of similarly careless and
sloppy statements and data.8 When something like this happens in fiction, it’s called an
“unreliable narrator.”

The two HIDECS reports describe five different programs, each using a different approach
to partitioning a design problem. After receiving the new material I coded up my own
versions of most of them, but none of them produced exactly the decomposition in
“Notes.” However, that was not the interesting conclusion.

The program called HIDECS 2 was designed to separate components into clusters with
minimal information transfer between them, meaning that the number of interaction links
across cluster boundaries is small. Alexander was trying to solve the coupling part of the
cohesion / coupling problem. Using the family analogy, he was trying to identify families in a
population by finding clusters of people where each cluster doesn’t do much with the other
clusters.

In the HIDECS reports Alexander calls the design requirements “vertices” or “misfit
variables” and the interactions between them “links.” HIDECS 2 proceeds by splitting the
set of all the vertices into two disjoint subsets (partitions) using a random selection process
that produces two subsets of, typically, unequal size. Next the program systematically tries
moving single vertices from one subset to the other, one at a time, measuring the goodness
of partition at each step, and selecting the best.9 This yields a binary partition of the set of
vertices into disjoint subsets; the program moves ahead by doing the same process on the
two partitions separately. The result is a binary tree: each node in the tree has exactly two
subtrees below it. Computer scientists describe this strategy as a “top-down algorithm.”
Note also that the goodness measure needs to measure the goodness of a partition of only
two sets.

In my early investigations I had discovered that trying to find clusters by looking for weak
coupling did not work well when the interactions were dense, such as in the Indian Village
problem. I also tried looking at cohesion as well as cohesion / coupling combined. In the
main body of “Notes,” Alexander shows what he calls “a typical graph” as part of his
description of how to decompose design problems using a program. Here is that typical
graph:

																																								 																					
7 Christopher Alexander, “A Result in Visual Aesthetics,” British Journal of Psychology, Volume 51, Issue 4,
November 1960.
8 Richard Gabriel, “Notes on “A Result in Visual Aesthetics,” https://dreamsongs.com/Files/Aesthetics.pdf.
9 Being a randomized algorithm, HIDECS 2 runs these steps (random partition followed by hillclimbing) a
number of times, choosing the best partition. My computer and version of this program can run these steps
hundreds of times more than his could in a tolerable amount of time.	

Every program I wrote and every program in the HIDECS reports can decompose this. By
way of contrast, here is a visualization of the network of interactions for the Indian Village
problem:

Once one starts to look for strongly cohesive clusters instead of loosely coupled ones in a
dense network of interactions, overlap naturally occurs. I know that Alexander noticed this
too. First, because playing with Alexander’s earliest program and seeing it not do a good job
or not doing a consistent job would lead anyone with curiosity to try alternatives. Second,
because he said so:

HIDECS 2 has three important weaknesses:

1. The fact that the decomposition is made in a series of binary steps leads to certain ‘mistakes,’
since the holistic relatedness of system and subsystems is not properly taken into account.

2. The fact that the decomposition criterion INFO [the goodness measure] is based on very
stringent assumptions about the nature of the system G(M,L). Namely, that the elements of M are
binary variables, that the two variable correlations are very small, and that the many variable
correlations vanish altogether. These assumptions make it hard to find systems in the real world
which the formalism of HIDECS 2 can adequately represent.

3. The fact that the subsets of elements which make the most natural subsystems of a system are not
always disjoint, but often overlap. [HIDECS 3]

In the HIDECS 3 report, Alexander addresses these flaws. He describes four programs. The
first flaw is that by going top down, HIDECS 2 never looks at the total, fine-grained
partition presented by the leaves of the binary tree. The approach in the first HIDECS 3
program is to start with a partition of the vertices into sets of single elements—for the
Indian Village problem, this is 141 sets. The program systematically tries combining pairs of
partitions, measuring the goodness of the entire partition; to do this, Alexander extended the
HIDECS 2 measure. This produces a decomposition into disjoint sets, not a tree.	

Alexander then observes a flaw with this program: a vertex with many links to a single other
vertex in the same potential partition might be pulled into a different partition because it also
has many single links to the vertices there. Returning to the family analogy, someone with
many friends in another family might be considered a member of that family and not of their
real family. The second program proceeds by starting with a partition into single-vertex sets
and then systematically tries moving one vertex at a time from the set it happens to be in to
each of the other sets, one at a time. Alexander also created a new goodness measure that
looks only at cohesion—that is, to how strongly each vertex is linked to other vertices in the
same potential partition. The algorithms using the earlier goodness measures try to minimize
those measures—that is, minimize coupling; this algorithm tries to maximize the goodness
measure—that is, maximize cohesion. Keep in mind he likely did not have available the
named concepts of cohesion and coupling.

Once the first move was made to working with cohesion, Alexander moved more strongly in
that direction. In 1957 a pair of researchers came up with an improvement to one of the first
clique-detection algorithms: they were Frank Harary and Ian Ross; Alexander adopted this
algorithm (by direct reference to their paper10) for the third and fourth programs in the series
of four in the HIDECS 3 collection. The essential idea is that a partition is very strong when
each vertex interacts with every other one—this is the definition of a clique. For example, if
there are three vertices, each interacts with the other two; if there are four, each interacts
with the other three. The third and fourth of the programs in HIDECS 3 are variations on

																																								 																					
10 Frank Harary and Ian C. Ross, “A Procedure for Clique Detection Using the Group Matrix,” Sociometry,
Vol. 20, No. 3 (Sept 1957).

this. In his typical graph, one can see three strongly interacting triangles of vertices; these are
cliques.

Alexander noticed such tight cohesions in the HIDECS 2 paper and program. While
partitioning a set into subsets, when the program notices such complete graphs , it does not
try to subdivide them.

The Harary & Ross algorithm has flaws, as reported by Harary in his 1969 text, “Graph
Theory.” Instead of using that algorithm, I used a more modern one, the Tomita variant of
the Bron-Kerbosch algorithm. In 1967, Edward Bierstone and Allen Bernholtz developed a
semi-lattice recomposition program described in their report “HIDECS-RECOMP
PROCEDURE.”11 I implemented that as well, and it can be used to visualize the various
decompositions that start from clique detection.

Once I had all the bits of source code I needed to understand what the HIDECS programs
were doing, my interest in improving the results faded, as I suspect it did for Alexander. It
became clear that the original program, HIDECS 2, being a randomized algorithm, could
spit out a different partition each time it ran, but that there was a limit to how well they
would measure out according to the goodness measure. Moreover, as far as I know,
Alexander never reported a complete partitioning of the Indian Village problem, and what
he did report did not conform to what the program would produce. Namely, Alexander
presented a decomposition of the full problem into four sets, each likely the union of two
that were produced. This makes it a little difficult to judge how well his original program
does compared to my modern version, which I wanted to do for the sorts of problems he
described.

The basis for comparison was to use my recoding of his program running on modern
hardware to try to reproduce results he recorded. Alexander wrote in the HIDECS 2 report:

…the program requires as input…LATIS, the number of starting sets for the hill-climbing
algorithm to be chosen from the lattice…. The larger the value of LATIS selected, the more likely
that the sampling procedure will discover the optimal TSET—but as the sample size increases, so
does the amount of computer time used. [HIDECS 2]

My program running on my computer can support values for LATIS 50–500 times larger
than his could for a given expected duration of computation. For the goodness measure I
decided to use the one he described in “Determination of Components,” which is not quite
the same as the one in the HIDECS 2 report, but it preserves ordering—if GD is the
measure in “Determination of Components” and GH is the measure in HIDECS 2, then

GD (π1) < GD (π2) if and only if GH (π1) < GH (π2)

																																								 																					
11 Bierstone, E & Bernholtz, A, “HIDECS-RECOMP PROCEDURE,” Department of Civil Engineering,
MIT, Cambridge, Massachusetts, March 1967.

where π1 and π2 are two partitions. GD is the measure that produced the decomposition of
the Indian Village problem as reported in both “Determination of Components” and
“Notes.”

In general the results for the Indian Village were that his program found partitions with
worse goodness measures than mine. The only directly stated example of a partition into
exactly two sets is the partition of C into C1 and C2:

The goodness measures for Alexander’s partition and the one my program produced using
250 times more starting sets is as follows, where smaller is better (−91 is better than −89):

 C

CA −89.60

rpg −91.60

I discovered one extraordinary anomaly while looking at the top two levels of decomposition
in “Notes.”

I wanted to see how well Alexander’s program did partitioning the Entire Village—the
hardest partition of all. Alexander presents a partition of the whole problem into four sets.
A, B, C, D. As noted, his program actually produces a binary partition of the whole problem
(X,Y), and then each of those was further partitioned into two, yielding four. But, of the four
shown, which two came from the same initial partition? That is, the Indian Village must have
been partitioned in two sets, X and Y; does X=A+B, X=A+C, or X=A+D?12 Here are the
possibilities:

																																								 																					
12 “A+B” means the vertices of A and B are combined into a single set (set union). And note that if X=A+B,
then Y=C+D, etc.

We know what vertices are in A because we know what vertices are in A1, A2, and A3: they
are listed on page 151 of “Notes”:

Group Elements

A1 7, 53, 57, 59, 60, 72, 125, 126, 128

A2 31, 34, 36, 52, 54, 80, 94, 106, 136

A3 37, 38, 50, 55, 77, 91, 103

Similarly for B, C, and D. Therefore we know what vertices would be in X if X=A+B and in
Y if Y=C+D, for example.

To find out which two came from the same initial partition, I tried all possible pairings—that
is, I tried Options 1, 2, and 3—and the pairing that produced the best goodness for X and Y
using the goodness measure is Option 1. For concreteness, here are the raw values (smaller
numbers are better, so −645 is better than −562):

Option Goodness

Option 1 −645.04

Option 2 −434.40

Option 3 −562.65

I guessed Option 1 was what Alexander’s program did. Then I tried running my version of
HIDECS 2 on the Entire Village; its result at the first level, X1 and Y1, measured out to
−655.12—clearly better than all the options derived from Alexander’s partition into four
sets. I expected that if my program took that X1, it would produce A1 and B1

 that would
measure out better than Alexander’s A and B; and taking that Y1, it would produce C1 and
D1 that would also measure out better. This was naïve: the resulting partitions from my

Entire Village

X

A B

Y

C D

(a) Option 1

Entire Village

X

A C

Y

B D

(b) Option 2

Entire Village

X

A D

Y

B C

(c) Option 3

program were not much like Alexander’s; it proved problematic to come up with an apples /
apples comparison.13

While trying to figure out how to proceed, I ran an exhaustive pairwise computation of the
goodness measure on Alexander’s A, B, C, and D:

Pairs Goodness

A & B: −197.83

A & C: −257.00

A & D: −197.98

B & C: −341.70

B & D: −345.84

C & D: −297.75

From this table I guessed that Alexander’s program partitioned the Entire Village into
X=A+C and Y=B+D. This is the worst of the three options. When I used those for starting
points and derived my versions of A2, B2, C2, and D2, they were exactly the same as
Alexander’s.

Stated bluntly: the overall best partition (for A, B, C, D) is not necessarily obtained by doing
the best job starting at the top and working down to get the best X and Y, followed by
getting the best A & B from X and the best C & D from Y. This is possibly what Alexander
meant in the first of his three observed weaknesses of HIDECS 2 as discussed in the
HIDECS 3 report: “the holistic relatedness of system and subsystems is not properly taken
into account.”

Alexander’s other HIDECS programs produced single levels of partition; some produced
partitions with overlaps. In general the results shed confusing light on the Indian Village
problem, and I believe this was how it seemed to Alexander.

During my investigations I was struck by the cold abstractness of the problem statement:
141 vertices and ~1400 links binding them together. However, these requirements came
from real people and state real issues. Alexander writes:

All these misfit variables are stated here in their positive form; that is, as needs or requirements
which must be satisfied positively in a properly functioning village. They are, however, all derived

																																								 																					
13 My program partitioned X1 into pairs with goodness −320.53 and Y1 into pairs with
goodness −173.39.

from statements about potential misfits: each one represents some aspect of the village which could go
wrong, and is therefore a misfit variable…. [“Notes”]

Moreover, the vertices are broken into 13 groups: Religion and Caste; Social Forces; Agriculture;
Animal Husbandry; Employment; Water; Material Welfare; Transportation; Forests and Soils; Education;
Health; Implementation; Regional, Political, and National Development; here is a selection from each
group:

• 7. Cattle treated as sacred, and vegetarian attitude.
• 23. Men’s groups chatting, smoking, even late at night
• 36. Protection of crops from thieves, cattle, goats, monkeys, etc.
• 53. Upgrading of cattle.
• 65. Diversification of villages’ economic base—not all occupations agricultural.
• 67. Drinking water to be good, sweet.
• 79. Provision of cool breeze.
• 98. Daily produce requires cheap and constant (monsoon) access to market.
• 106. Young trees need protection from goats, etc.
• 112. Access to a secondary school.
• 125. Prevent malnutrition.
• 129. Factions refuse to cooperate or agree.
• 133. Social integration with neighboring villages.

In “Notes” Alexander writes:

Above all, the designer must resist the temptation to summarize the contents of the tree in terms of
well-known verbal concepts. He must not expect to be able to see for every S some verbal paradigm
like “This one deals with the acoustic aspects of the form.” If he tries to do that, he denies the whole
purpose of the analysis, by allowing verbal preconceptions to interfere with the pattern which the
program shows him. The effect of the design program is that each set of requirements draws his
attention to just one major physical and functional issue, rather than to some verbal or preconceived
issue. It thereby forces him to consolidate the physical ideas present in his mind as seedlings, and to
make physical order out of them.

While trying to reproduce the decomposition in “Notes,” I entertained the hypothesis that
Alexander made it by hand, and that he looked at the realities expressed in the requirement
statements. Some of my speculative, pre-HIDECS-informed programs took into account the
13 groups or various other groupings of them based on what they meant. And in fact, when
Alexander describes his decomposition, he spins a story of how they are connected. Here is
the start of one such:

The sacredness of cattle (7) tends to make people unwilling to control them, so they wander
everywhere eating and destroying crops, unless they are carefully controlled. Similarly, the need to
upgrade cattle (53) calls for a control which keeps cows out of contact with roaming scrub bulls; and
further calls for some sort of center where a pedigree bull might be kept (even if only for visits); and a
center where scrub bulls can be castrated. Cattle diseases (57) are mainly transferred from foot to

foot, through the dirt—this can be prevented if the cattle regularly pass through a hoof bath of
disinfecting permanganate….

What can we learn from these investigations? Christopher Alexander’s journey was of slowly
dawning insights not a grand aha! He created flawed software that hinted at approaches to
decomposition instead of reliably solving the problem. Although he did not have the
concepts of cohesion and coupling as they are now known, he navigated the waters between
them. He was not shy about using techniques and algorithms invented by others: some
randomized algorithms already existed and were generally known in the late 1950s;14 clique
detection algorithms were known and Alexander acknowledges using one. Alexander and
Manheim were not inept programmers—the HIDECS programs were written in assembly
language and exhibited a sophisticated use of so-called “bumming” techniques.15

The HIDECS reports are not part of Alexander’s formal publications; they are technical or
research reports internal to a research organization—they are not very different from lab
notes. It isn’t fair to criticize based on deep analysis of such ephemeral materials.

However, it is fair to note the progression of thought from these very early investigations to
those near the end of a career. Imagine the mind that progressed as follows:

The tree of sets this decomposition gives is, within the terms of this book, a complete structural
description of the design problem defined by M; and it therefore serves as a program for the synthesis
of a form which solves this problem.…

The organization of any complex physical object is hierarchical. It is true that, if we wish, we may
dismiss this observation as an hallucination caused by the way the human brain, being disposed to
see in terms of articulations and hierarchies, perceives the world. On the whole, though, there are
good reasons to believe in the hierarchical subdivision of the world as an objective feature of reality.
[Notes]

That is originally from the early 1960s. Next from “A City is not a Tree”16:

For the human mind, the tree is the easiest vehicle for complex thoughts. But the city is not, cannot
and must not be a tree. The city is a receptacle for life. If the receptacle severs the overlap of the
strands of life within it, because it is a tree, it will be like a bowl full of razor blades on edge, ready
to cut up whatever is entrusted to it. In such a receptacle life will be cut to pieces. If we make cities
which are trees, they will cut our life within to pieces. [ACINAT]

Around the same time, in an essay:17

																																								 																					
14 Simulated annealing, which I used in this investigation, was invented in 1953 by Nicholas Metropolis.
15 Bum: “to make highly efficient, either in time or space, often at the expense of clarity.”
16 Christopher Alexander, “A City is Not a Tree,” Architectural Forum, Vol 122, No 1, April 1965.
17 Christopher Alexander, “On Value,” Concrete 1965.	

Myself, as some of you know, originally a mathematician, I spent several years, in the early sixties,
trying to define a view of design, allied with science, in which values were also let in by the back door.
I too played with operations research, linear programming, all the fascinating toys, which
mathematics and science have to offer us, and tried to see how these things can give us a new view of
design, what to design, and how to design.

Finally, however, I recognized that this view is essentially not productive, and that for mathematical
and scientific reasons, if you like, it was essential to find a theory in which value and fact are one, in
which we recognize that here is a central value, approachable through feeling, and approachable by
loss of self, which is deeply connected to facts, and forms a single indivisible world picture, within
which productive results can be obtained. [ON VALUE]

Then in “The Nature of Order, Book 4”:18

The I, that blazing one, is something which I reach only to the extent that I experience, and make
manifest, my feeling. What feeling, exactly? What exactly am I aiming for in a building, in a
column, in a room? How do I define it for myself, so that I can feel it clearly, so that it stands as a
beacon to steer me in what I do every day?…

What I aim for is, most concretely, sadness. I try to make the volume of the building so that it
carries in it all feeling. To reach this feeling, I try to make the building so that it carries my eternal
sadness. It comes, as nearly as I can in a building, to the point of tears. [NoO]

We see in the early mind what the mind became. When we read the backstories in the
HIDECS reports and read carefully the words in his formal publications, we learn that the
reality of the computer and the poverty of programming languages were stern teachers,
teaching Alexander that cold abstraction requires a warm human hand and experienced (tear-
filled) eyes, that machines can be partners for exploration, and that a city is not a tree.

																																								 																					
18 Christopher Alexander, “The Nature of Order, The Luminous Ground,” Center for Environmental
Structure, Berkeley, CA, USA, 2004; Volume 4.

