
The Common Lisp Object System

by

Linda G. DeMichiel

Lucid, Inc.
707 Laurel Street

Menlo Park, California 94025

1. Abstract

The Common Lisp Object System is an object-oriented system that is based on the
concepts of generic functions, multiple inheritance, and method combination. All objects
in the Object System are instances of classes that form an extension to the Common Lisp
type system. The Common Lisp Object System is based on a meta-object protocol that
renders it possible to alter the fundamental structure of the Object System itself.

2. History of the Common Lisp Object System

The Common Lisp Object System is an object-oriented programming paradigm de-
signed for Common Lisp. Over a period of twenty months, the Common Lisp Object
System design group took the best ideas from CommonLoops and Flavors and combined
them into a new object-oriented paradigm for Common Lisp. This combination is not
simply a union: it is a new paradigm that is similar in its outward appearances to Com-
monLoops and Flavors, and it has been given a firmer underlying semantic basis. The
major participants in this design effort were Daniel Bobrow and Gregor Kiczales from
Xerox, David Moon and Sonya Keene from Symbolics, and Richard Gabriel and Linda
DeMichiel from Lucid.

The Common Lisp Object System has been proposed as a standard for ANSI Common
Lisp. In 1987, the X3J13 committee endorsed an earlier, but incomplete, version of the
specification, stating that it would almost certainly be adopted as part of the Common
Lisp standard, and encouraged implementors to proceed with trial implementations. In
June 1988, the X3J13 committee accepted the Common Lisp Object System Programmer

1



§ 2 History of the Common Lisp Object System

Interface, as defined in Document 88-002R, for inclusion into the Common Lisp language
being specified by X3J13. This paper is a report on the specification of the Common Lisp
Object System Programmer Interface that was adopted by X3J13 in June 1988.

3. The Common Lisp Object System View of Object-Oriented Programming

3.1 What the Common Lisp Object System Is

The Common Lisp Object System is an object-oriented system that is based on the
concepts of classes, generic functions, multiple inheritance, method combination, and meta-
objects.

All objects in the Object System are instances of classes that form an extension to
the Common Lisp type system.

A generic function is a function whose behavior depends on the classes or identities of
the arguments supplied to it. The methods associated with the generic function define the
class-specific behavior and operations of the generic function. In the Common Lisp Object
System, classes and generic functions are first-class objects with no intrinsic names. Thus,
it is possible and useful to create and manipulate anonymous classes and generic functions.

The Common Lisp Object System supports multiple inheritance in a similar man-
ner to CommonLoops and Flavors. Inheritance of methods and structure is based on a
linearization of the class graph.

The Common Lisp Object System supports a mechanism for method combination
that is both more powerful than that provided by CommonLoops and simpler than that
provided by Flavors.

The Common Lisp Object System is founded on a meta-object system that is capable
of supporting other object-oriented paradigms. In fact, the Object System itself can be
implemented within this meta-object system.

3.2 What the Common Lisp Object System Is Not

The Object System is not a message-passing language. If the behavior of generic
functions depended on the class of exactly one argument, where that argument was dis-
tinguished by its position, then it would be isomorphic to a message-passing language.
But the behavior of a generic function can depend on the classes of several arguments
simultaneously.

2



§ 3The Common Lisp Object System View of Object-Oriented Programming

The Object System is not a single inheritance language. As such it is much more like
Flavors than like Smalltalk-80.

The Object System does not attempt to solve problems of encapsulation or protection.
The inherited structure of a class depends on the names of internal parts of the classes from
which it inherits. The Object System does not support subtractive inheritance. Within
Common Lisp there is a primitive module system that can be used to help create separate
internal namespaces.

4. Classes

A class is an object that determines the structure and behavior of a set of other
objects, which are called its instances. It is an important feature of the Common Lisp
Object System that every Common Lisp object is an instance of a class. It is not necessary
for a class to have any instances.

The definition of a class allows a set of superclasses to be designated as classes from
which the given class can inherit structure and behavior. A class whose definition spec-
ifies such a set of superclasses is said to be a subclass of each of those classes. A class
can be neither a direct nor indirect subclass of itself. Thus, classes are organized into a
directed acyclic graph. There is a distinguished class named t that is a superclass of every
other class. The inheritance relationship that is defined by the subclass and superclass
relationships among classes is transitive.

Classes are first-class objects that are themselves instances of classes. The class of the
class of an object is called the metaclass of that object. The class of a class determines
the representation of the instances of that class. The existence of metaclasses indicates
that the structure and behavior of the class system itself is controlled by classes. Generic
functions and methods are also objects and therefore are also instances of classes.

The Common Lisp Object System integrates the space of classes and the Common
Lisp type space. For every class there is a corresponding type with the same name as the
class. Many of the predefined Common Lisp type specifiers have a corresponding class of
the same name as the type.

Users can write methods that discriminate on any primitive Common Lisp type that
has a corresponding class. However, it is not allowed to make an instance of certain
predefined classes with make-instance or to designate certain classes as superclasses.

3



§ 4 Classes

Programmer-defined classes are instances of the class named standard-class. In-
stances whose metaclass is standard-class are like Common Lisp structures: they have
named slots, which contain values. When we say that the structure of an instance is de-
termined by its class and that that class is an instance of standard-class, we mean that
the number and names of the slots are determined by the class, and we also mean that the
means of accessing and altering the contents of those slots are controlled by the class.

4.1 Defining Classes

The macro defclass is used to define a class.

The definition of a class consists of the following: its name, a list of its direct super-
classes, a set of slot specifiers, and a set of class options.

The direct superclasses of a class are those classes from which the new class inherits
structure and behavior. When a class is defined, the order in which its direct superclasses
are mentioned in the defclass form defines a local precedence order on the class and
those superclasses. The local precedence order is used in determining inheritance. It is
represented as a list consisting of the class followed by its direct superclasses in the order
that they are mentioned in the defclass form.

A slot specifier consists of the name of the slot and zero or more slot options. The slot
options of the defclass form allow for the following: providing initialization arguments for
use in controlling the process of instance creation and initialization; providing a default
initial value form for the slot; specifying that methods for generic functions are to be
created for reading or writing the slot; controlling whether the slot is to be shared by all
instances of the class or whether each instance is to have its own copy of the slot; and
specifying the expected type of the slot contents.

A class option pertains to the class as a whole. The available class options allow
for the following: providing default values for initialization arguments; specifying that
the instances of the class are to have a metaclass other than the default; and providing
documentation for the class.

For example, the following two classes define a representation of a point in space. The
class x-y-position is a subclass of the class position:

(defclass position () ())

4



§ 4 Classes

The class position is useful if we desire to create other sorts of representations for spatial
positions.

(defclass x-y-position (position)
((x :initform 0 :accessor position-x)
(y :initform 0 :accessor position-y)))

The x- and y-coordinates are initialized to 0 in all instances unless explicit values are
supplied for them. To refer to the x-coordinate of an instance of the class x-y-position,
position, we write:

(position-x position)

To change the x-coordinate of that instance to the value new-x, we write:

(setf (position-x position) new-x)

4.2 Slots

Classes and class instances have named slots. The name of a slot is a symbol that
could be used as a Common Lisp variable name.

There are two kinds of slots: slots that are local to individual instances and slots that
are shared by all the instances of a class. The kind of slot that is created is determined by
the :allocation slot option to defclass.

In general, slots are inherited by subclasses. That is, a slot defined by a class is also a
slot implicitly defined by any subclass of that class unless that slot definition is shadowed.
A class can shadow some or all of the slot options declared in the defclass form of one of
its superclasses by providing its own description for that slot.

The defclass syntax allows for requesting that methods to read and write slots be
automatically generated. The :reader slot option specifies that a reader method is to be
created for reading the value of the slot. The :writer slot option specifies that a writer
method is to be created for writing the value of the slot. The :accessor slot option specifies
that both reader and writer methods are to be created for accessing and setting the value
of the slot. All such methods are added to the appropriate generic functions. It is possible
to modify the behavior of these generic functions by writing methods for them.

Slots can also be accessed by using the primitive function slot-value. The function
slot-value can be used with a slot name to access a specific slot in an object, whether

5



§ 4 Classes

or not methods have been specified to read or write that slot. The function slot-value is
used to implement reader and writer methods.

Sometimes it is convenient to access slots from within the body of a method or a
function. The macro with-slots is provided for use in setting up a lexical environment
in which certain slots are lexically available as if they were variables. The macro with-

accessors provides an analogous functionality: it sets up a lexical environment in which
certain slots are lexically available through their accessors as if they were variables.

4.3 Class Precedence

A class precedence list is associated with every class. The class precedence list is used
for purposes of determining inheritance. It is a total ordering on the set of the given class
and its superclasses in which the most specific classes precede the least specific.

The construction of the class precedence list at a class proceeds by topologically sorting
the set of that class and its superclasses under the relation that a class precedes its direct
superclasses and a direct superclass precedes all other direct superclasses specified to its
right in the superclasses list of the defclass form. Therefore, the class precedence list
is always consistent with the local precedence order of each class in the list. The classes
in each local precedence order appear within the class precedence list in the same order.
Because a partial ordering may be embedded in several total orderings, there is a rule used
to select which total ordering to use. That rule has two main effects: simple chains of
superclasses are preserved, and classes in relatively separated subgraphs are adjacent.

If the local precedence orders are inconsistent with each other, no class precedence
list can be constructed, and an error will be signaled.

5. Generic Functions

The class-specific operations of the Common Lisp Object System are provided by
generic functions and methods.

A generic function is a function whose behavior depends on the classes or identities
of its arguments. The operations of a generic function are defined by its methods. Thus,
generic functions are objects that may be specialized by the definition of methods to provide
class-specific operations. The behavior of the generic function results from which methods
are selected for execution, the order in which the selected methods are called, and how
their values are combined to produce the value or values of the generic function.

6



§ 5 Generic Functions

Thus, unlike an ordinary function, a generic function can have a distributed definition,
corresponding to the definitions of its methods. The definition of a generic function is
found in a set of defmethod forms, possibly along with a defgeneric form that provides
information about the properties of the generic function as a whole.

In addition to a set of methods, a generic function object comprises a lambda-list, a
method combination type, and other information.

The lambda-list specifies the arguments to the generic function. It is an ordinary
function lambda-list with these exceptions: no &aux variables are allowed; optional and
keyword arguments may not have default initial value forms nor use supplied-p parameters.
Default values are not supported by the generic function, but rather by individual methods.

The method combination type determines the form of method combination that is used
with the generic function. The method combination facility determines which methods are
available for execution, the order in which they are run, and the values that are returned
by the generic function. The Common Lisp Object System provides a default method
combination type that is appropriate for most user programs, as well as a number of other
built-in method combination types. The define-method-combination macro is provided
for declaring new types of method combination.

The generic function object also contains information about the argument precedence
order (the order in which arguments to the generic function are tested for specificity when
selecting executable methods), the class of the generic function, and the class of the meth-
ods of the generic function.

Generic functions are first-class objects in the Common Lisp Object System. They
can be used in the same ways that ordinary functions can be used in Common Lisp, and
they are invoked using the same syntax. Thus, like an ordinary function, a generic function
can be passed as an argument and be used as the first argument to funcall and apply.

5.1 Defining Generic Functions

Generic functions are defined by means of the defgeneric and defmethod macros.

The defgeneric macro is designed to be used to specify properties of the generic
function as a whole—sometimes referred to as the “contract” of the generic function.
These properties include the lambda-list of the generic function, the argument precedence
order, declarations that pertain to the generic function as a whole, the method combination
type, the class of the generic function, and the class of the methods of the generic function.

7



§ 5 Generic Functions

The Common Lisp Object System provides default values for these properties, so that the
use of defgeneric is not essential. The defgeneric macro can also be used to specify a
set of methods on the generic function. If no methods are specified, a generic function
with no methods is created.

If a defgeneric form is evaluated and a generic function of the given name does not
already exist, a new generic function object is created.

When a new defgeneric form is evaluated and a generic function of the given name
already exists, the existing generic function object is modified. This modification may
include replacement of existing methods on the generic function or the addition of new
methods.

Local generic functions can be defined by using the generic-flet, generic-labels,
and with-added-methods special forms. Anonymous generic functions are defined by
using the generic-function macro.

6. Methods

The class-specific operations provided by generic functions are themselves defined and
implemented by methods. A generic function can have several methods associated with
it, and when the generic function is called, the class or identity of each argument to the
generic function determines which method or methods are eligible to be invoked.

A method object contains a lambda-list, a method function, an ordered set of param-
eter specializers that specify when the given method is applicable, and an ordered set of
qualifiers that are used by the method combination facility.

A parameter specializer is associated with each required formal parameter of a method.
A method’s parameter specializers are used to determine when that method can be invoked.
A parameter specializer is either a class or a list of the form (eql object).

A method can be selected for a set of arguments when each required argument satisfies
its corresponding parameter specializer. Such a method is said to be an applicable method
for those arguments. An argument satisfies a parameter specializer if either of the following
conditions holds:

1. The parameter specializer is a class and the argument is an instance of that class or
an instance of any subclass of that class.

8



§ 6 Methods

2. The parameter specializer is (eql object) and the argument is eql to object.

A method all of whose parameter specializers are t is termed a default method . A
default method is always applicable, but if it is shadowed by a more specific method, it
may not be invoked.

Method qualifiers provide the method combination procedure a further means of dis-
tinguishing between methods. A qualifier can be any non-nil atom. By convention, quali-
fiers are usually symbols.

In standard method combination, unqualified methods are also termed primary meth-
ods, and qualified methods have a single qualifier that is either :around, :before, or
:after.

6.1 Defining Methods

The macro defmethod is used to create a method object. The defmethod form
specifies the code that is to be run when the method that it defines is selected.

When a defmethod form is evaluated and no generic function of the given name
already exists, a generic function is automatically created with default values for the ar-
gument precedence order, the generic function class, the method class, and the method
combination type. The lambda-list of the generic function is created to be congruent with
the lambda-list of the new method. In general, two lambda-lists are congruent if they have
the same number of required parameters, the same number of optional parameters, and
the same treatment of &rest and &key arguments.

When a defmethod form is evaluated and a generic function of the given name
already exists, the existing generic function object is modified to include the new method.

In addition to the method body, a method definition contains a specialized lambda-list
and possibly one or more method qualifiers.

The specialized lambda-list specifies when that method can be selected for execution.
A specialized lambda-list is like an ordinary lambda-list except that specialized parameters
occur in the place of the names of required parameters. A specialized parameter is a list
consisting of a variable name and a parameter specializer name. All required parameters
in a specialized lambda-list must be specialized parameters. If some required parameter is
simply a variable name, the corresponding specialized parameter is taken to be (variable-
name t).

9



§ 6 Methods

A method definition can optionally specify one or more method qualifiers. A method
qualifier is a non-nil atom that identifies the role of the method to the method combination
type that is used by the generic function of which it is part.

Generic functions can be used to implement a layer of abstraction on top of a set of
classes. For example, the class x-y-position can be viewed as containing information in
polar coordinates.

Two methods are defined, called position-rho and position-theta, that calculate
the ρ and θ coordinates given an instance of the class x-y-position.

(defmethod position-rho ((pos x-y-position))
(let ((x (position-x pos))

(y (position-y pos)))
(sqrt (+ (* x x) (* y y)))))

(defmethod position-theta ((pos x-y-position))
(atan (position-y pos) (position-x pos)))

It is also possible to write methods that update the “virtual slots” position-rho and
position-theta:

(defmethod (setf position-rho) (rho (pos x-y-position))
(let* ((r (position-rho pos))

(ratio (/ rho r)))
(setf (position-x pos) (* ratio (position-x pos)))
(setf (position-y pos) (* ratio (position-y pos)))))

(defmethod (setf position-theta) (theta (pos x-y-position))
(let ((rho (position-rho pos)))

(setf (position-x pos) (* rho (cos theta)))
(setf (position-y pos) (* rho (sin theta)))))

To update the ρ-coordinate we write:

(setf (position-rho pos) new-rho)

which is precisely the same syntax that would be used if the positions were explicitly stored
as polar coordinates.

7. Inheritance

Inheritance is the key to program modularity within the Common Lisp Object Sys-
tem. A typical object-oriented program consists of several classes, each of which defines
some aspect of behavior. New classes are defined by including the appropriate classes as
superclasses, thus gathering desired aspects of behavior into one class.

10



§ 7 Inheritance

7.1 Multiple Inheritance

The Common Lisp Object System is a multiple-inheritance system; that is, it allows
a class to directly inherit the structure and behavior of two or more otherwise unrelated
classes. In a single inheritance system, if class C3 inherits from classes C1 and C2, then
either C1 is a subclass of C2 or C2 is a subclass of C1; in a multiple inheritance system, if
C3 inherits from C1 and C2, then C1 and C2 might be unrelated.

If no structure is duplicated and no operations are multiply defined in the several
superclasses of a class, multiple inheritance is straightforward. If a class inherits two
different operation definitions or structure definitions, it is necessary to provide some
means of selecting which ones to use or how to combine them. The Object System uses
the class precedence list for determining how structure and behavior are inherited among
classes.

7.2 Inheritance of Slots and Slot Description

In general, slot descriptions are inherited by subclasses; that is, slots defined by a
class are usually slots implicitly defined by any subclass of that class unless the subclass
explicitly shadows the slot definition. A class can also shadow some of the slot options
declared in the defclass form of one of its superclasses by providing its own description
for that slot.

At most one slot with a given name is accessible in any instance of a class. If only
one class in the class precedence list provides a slot description with a given slot name,
inheritance is straightforward. If the slot is a local slot, each instance of the class and all
of its subclasses allocate storage for it. If it is a shared slot, the storage for the slot is
allocated by the class that provided the slot description, and the single slot is accessible
in instances of that class and all of its subclasses.

If more than one class in the class precedence list of a class C provides a slot description
with a given slot name, only a single slot of that name will be accessible in instances of class
C. The properties of that slot result from a combination of the several slot descriptions.

7.3 Inheritance of Methods

In the Common Lisp Object System, generic functions are seldom associated unam-
biguously with a single class or instance; rather, they sit above a substrate of the class
graph, and the class graph provides control information for the generic functions. It is thus

11



§ 7 Inheritance

more appropriate to think in terms of method applicability rather than the inheritance of
methods.

Any method that is applicable to the instances of a class will also be applicable to
all instances of any subclass of that class (assuming that all the other arguments to the
generic function are the same).

8. Object Creation and Initialization

The Common Lisp Object System object creation and initialization protocol provides
a flexible and powerful mechanism for the creation and initialization of class instances.
The individual steps of the creation process are implemented by generic functions that
are designed for customization. In addition, the creation and initialization process can be
controlled by the use of initialization arguments.

8.1 Instance Creation

Instances are created by the generic function make-instance. Given a class and a
series of initialization arguments, make-instance returns a new instance of the class.

The generic function make-instance checks the validity of the initialization argu-
ments and invokes the generic function allocate-instance to allocate storage for the
instance and the generic functions initialize-instance and shared-initialize to initialize
the new instance.

8.2 Instance Initialization

Initialization arguments are symbols that are associated with slots and with methods
for the generic functions allocate-instance, initialize-instance, and shared-initialize.
Initialization arguments are declared as valid by means of the :initarg slot options to
defclass and by their use in the lambda-lists of these methods. Default initial value forms
for initialization arguments can be specified with the :default-initargs class option to
defclass.

The generic function make-instance creates a defaulted initialization argument list
by combining the initialization arguments and values supplied to it with default values
for any other initialization arguments associated with the class and the applicable initial-
ization methods. This defaulted initialization argument list has two purposes: to provide
arguments for initialization methods and to fill slots with values.

12



§ 8 Object Creation and Initialization

The defaulted initialization argument list consists of the explicitly supplied initializa-
tion arguments and values, in the order that they were given to make-instance, followed
by the defaulted initialization arguments, in an order that is determined by the order that
the defaulted initialization arguments occur in the defclass forms of the class and its
superclasses and in the class precedence list.

The generic functions that initialize instances, initialize-instance and shared-

initialize, use the defaulted initialization argument list to fill slots. A slot is filled with the
value of the first initialization argument in the defaulted initialization argument list that
is associated with that slot. If the slot cannot be filled in this way, it is filled according to
the :initform slot option of the declass form, if this has been specified.

Object creation and initialization can be further customized by the definition of addi-
tional methods on the generic functions make-instance, allocated-instance, initialize-

instance, and shared-initialize.

For example, the following method for initialize-instance will be run before the
system-supplied instance when an instance of class x-y-position is created. The initial-
ization arguments :rho and :theta are declared as valid by their use in the lambda-list of
the :before method; their values are supplied in the call to make-instance.

(defmethod initialize-instance :before
((pos x-y-position)
&key ((:rho rho) 0.0 rho-supplied)

((:theta theta) 0.0 theta-supplied))
(when (and rho-supplied theta-supplied)
(setf (position-x pos) (* rho (cos theta)))
(setf (position-y pos) (* rho (sin theta)))))

(make-instance ’x-y-position :rho 5.7 :theta (/ pi 4))

9. Method Combination

When a generic function is invoked, the code that is executed is one of the applicable
methods of the generic function or a combination of several of them. This code is termed
the effective method.

Computing the effective method involves the following decisions: which method or
methods to call; the order in which to call these methods; which method to call when the
function call-next-method is invoked; what value or values to return.

13



§ 9 Method Combination

In order to compute the effective method, the set of applicable methods for the given
arguments is first determined. These methods are then sorted according to precedence
order, so that the most specific method occurs first. Method combination is then applied
to the sorted list of methods to produce the effective method.

The effective method is called with the same arguments that were passed to the generic
function. The values that the effective method returns are returned as the values of the
generic function.

9.1 Standard Method Combination

Standard method combination is the default method combination type provided by
the Object System. Standard method combination recognizes four roles for methods, as
determined by method qualifiers.

A primary method defines the main action of the effective method. Primary methods
have no method qualifiers. Standard method combination requires that if there are any
applicable methods at all, there must be an applicable primary method.

An auxiliary method modifies the action of the primary method or of another auxiliary
method. The auxiliary methods are :before, :after, and :around methods. In standard
method combination, an auxiliary method can have exactly one qualifier that is either
:before, :after, or :around.

In standard method combination, the applicable methods are called as follows:

If any :around methods exist, the most specific :around method is called. The
function call-next-method can be used within the body of an :around method to call
the next method. By convention, :around methods almost always use call-next-method.
If call-next-method is not used, no other methods will be invoked.

When call-next-method is invoked within an :around method, the next most spe-
cific :around method is called, if one is applicable.

When there are no :around methods or when call-next-method is called from within
the least specific :around method, the other methods are called as follows:

1. All the :before methods are called in increasing order of precedence, the most specific
method first.

14



§ 9 Method Combination

2. The most specific primary method is called. The function call-next-method can be
used inside the body of a primary method to invoke the next most specific primary
method.

3. All the :after methods are called in decreasing order of precedence, the least specific
method first.

If any :around methods are called, the value or values that are returned by the most
specific :around method will be those that are returned by the generic function invocation.

If no :around methods are invoked, the value or values that the most specific pri-
mary method returns will be those that are returned by the generic function invocation.
Otherwise, the invocation of call-next-method in the least specific :around method will
return the value or values that are returned by the most specific primary method.

The values of all :before and :after methods are ignored.

If only primary methods are used, standard method combination behaves like Com-
monLoops. If call-next-method is not used, only the most specific method is invoked;
that is, more general methods are shadowed by more specific ones. If call-next-method

is used, the effect is the same as run-super in CommonLoops.

If call-next-method is not used, standard method combination behaves like :dae-

mon method combination of New Flavors, with :around methods playing the role of
whoppers, except that the order of the primary methods cannot be reversed.

Method combination can be illustrated by the following example. Suppose we have a
class called general-window, which is made up of a bitmap and a set of viewports.

(defclass general-window ()
((initialized :initform nil :accessor general-window-initialized)
(bitmap :type bitmap :accessor general-window-bitmap)
(viewports :type list :accessor general-window-viewports)))

The viewports are stored as a list. We presume that it is desirable to make instances of
general windows but to not create their bitmaps until they are actually needed. Thus,
we see that there is a flag, called initialized, that states whether the bitmap has been
created. The bitmap and viewports slots are not initialized by default.

We now wish to create an announcement window that will be used for messages that
must be brought to the user’s attention. When a message is to be announced to the

15



§ 9 Method Combination

user, the announcement window is exposed, the message is moved into the bitmap for the
announcement window, and finally the viewports are redisplayed.

(defclass announcement-window (general-window)
((contents :initform ‘‘’’

:type string
:accessor announcement-window-contents)))

(defmethod display :around (message (w general-window))
(unless (general-window-initialized w)
(setf (general-window-bitmap w) (make-bitmap))
(setf (general-window-viewports w)

(list (make-viewport (general-window-bitmap w))))
(setf (general-window-initialized w) t)))

(defmethod display :before (message (w announcement-window))
(expose-window w))

(defmethod display :after (message (w announcement-window))
(redisplay-viewports w))

(defmethod display ((message string) (w announcement-window))
(move-string-to-window message w))

To make an announcement, the generic function display is invoked on a string and
an annoucement window. The :around method is always run first; if the bitmap has not
been set up, this method takes care of it. The primary method for display simply moves
the string (the announcement) to the window, the :before method exposes the window,
and the :after method redisplays the viewports. When the window’s bitmap is initialized,
the sole viewport is made to be the entire bitmap. These methods are invoked in the
following order: 1. the :around method, 2. the :before method, 3. the primary method,
and 4. the :after method.

9.2 Other Types of Method Combination

In addition to standard method combination, the Common Lisp Object System pro-
vides the built-in method combination types +, and, append, list, max, min, nconc,
or, and progn.

The programmer can define new forms of method combination by using the define-

method-combination macro.

16



§ 10 Class Redefinition

10. Class Redefinition

The Common Lisp Object System provides a powerful class-redefinition facility.

When a defclass form is evaluated and a class with the given name already exists,
the existing class is redefined.

When a class is redefined, the existing class object is modified to reflect the new
class definition, and changes are propagated to its instances and to instances of any of
its subclasses. The updating process may modify a given instance, but it does not affect
the identity of the instance as defined by the eq function. The updating process does not
cause any new instances to be created.

Users can define methods on the generic functions update-instance-for-redefined

class and shared-initialize to control the redefinition process. The generic function
update-instance-for-redefined-class is invoked automatically by the system after def-

class has been used to redefine an existing class.

Users can also explicitly request that the class of an instance be changed by invoking
the function change-class. The generic function update-instance-for-different-class

is invoked by change-class. Its behavior can be customized by the definition of additional
methods.

For example, suppose it becomes apparent that the application that requires rep-
resenting positions uses polar coordinates more than it uses rectangular coordinates. It
might make sense to define a subclass of position that uses polar coordinates:

(defclass rho-theta-position (position)
((rho :initform 0 :accessor position-rho)
(theta :initform 0 :accessor position-theta)))

Instances of x-y-position can be automatically updated by defining a method for update-

instance-for-different-class. The method in the example below is a :before method so
that it will not shadow the behavior of the system-supplied primary method on update-

instance-for-different-class.

17



§ 10 Class Redefinition

(defmethod update-instance-for-different-class :before
((old x-y-position)
(new rho-theta-position)

&key)
;; Information is copied from old to new to make new
;; be a rho-theta-position at the same position as old.
(let ((x (position-x old))

(y (position-y old)))
(setf (position-rho new) (sqrt (+ (* x x) (* y y)))

(position-theta new) (atan y x))))

The function change-class can now be used to change a particular instance of the class
x-y-position, p1, to be an instance of rho-theta-position:

(change-class p1 ’rho-theta-position)

11. Meta-Objects

The Common Lisp Object System is implemented in terms of a set of objects that
correspond to predefined classes of the system. These objects are termed meta-objects.
The Common Lisp Object System meta-object protocol specifies a set of generic functions
and methods on these objects and thus defines the behavior of the Object System itself.

The set of predefined metaclasses provided by the Common Lisp Object System in-
cludes standard-class, structure-class, standard-method, and standard-generic-

function.

The class standard-class is the default class of classes defined by defclass. The class
structure-class is the default class of all classes defined by defstruct.

The class standard-method is the default class of methods defined by defmethod

or defgeneric.

The class standard-generic-function is the default class of generic functions defined
by defmethod or defgeneric.

There are also other, more general classes from which these metaclasses inherit.

18



§ 12 References

12. References

Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon, Common Lisp Object System Specification, X3J13 Document
88-002R.

Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and
Frank Zdybel, “CommonLoops: Merging Lisp and Object-Oriented Programming,” ACM
OOPSLA Conference, 1986.

Daniel G. Bobrow, and Gregor Kiczales, “The Common Lisp Object System Metaobject
Kernel: A Status Report,” ACM Lisp and Functional Programming Conference, 1988.

Linda G. DeMichiel and Richard P. Gabriel, “The Common Lisp Object System: An
Overview,” Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), 1987.

Adelle Goldberg and David Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, Reading, Massachusetts, 1983.

Sonya E. Keene, Object-Oriented Programming in Common Lisp, Addison-Wesley, Reading
Massachusetts, 1988.

David A. Moon, “The Common Lisp Object-Oriented Programming Language Standard,”
in Won Kim and Fred Lochovsky, eds., Object-Oriented Concepts, Applications, and
Databases, Addison-Wesley, Reading, Massachusetts, 1988.

Guy L. Steele, Common Lisp: The Language, Digital Press, 1984.

Reference Guide to Symbolics Common Lisp: Language Concepts, Symbolics Release 7
Document Set, 1986.

19


