
1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA’08 October 19–23, 2008, Nashville, Tennessee, USA.
Copyright © 2008 ACM 978-1-60558-215-3/08/10… $5.00.

Preface

In 1992 when we completed our first draft of the History
of Programming Languages II paper, The Evolution of Lisp
[1], it included sections on a theory or model of how com-
plex language families like Lisp grew and evolved, and in
particular, how and when diversity would bloom and con-
solidation would prune. The historian who worked with all
the HOPL II authors, Michael S. Mahoney, did not believe
our theory was substantiated properly, so he recommend-
ed removing the material and sticking with the narrative
of Lisp’s evolution. We stopped working on those sections,
but they remained in the original text sources but removed
with conditionals.

Although the uncut version of the paper is published on-
line [2], the theory was never officially published. This short
paper is the publication of that material.

Pattern of Language Evolution

The evolution of Lisp since Lisp 1.5 [3] [4] is characterized
by a cycle of diversification, acceptance, and consolida-
tion. During diversification, new language constructs, new
styles of programming, new implementation strategies, and
new programming paradigms are experimented with and
introduced to existing Lisp dialects, or new Lisp dialects
are designed. In either case, a new Lisp dialect is, in effect,
created. During acceptance, these new Lisp dialects are ei-
ther accepted or rejected. The designers or backers of the
new dialect will set conditions for acceptance, and the suc-
cess of the acceptance phase will be determined by those
conditions. During consolidation, a variety of dialects are
merged. Typically one dialect will be chosen as the root and
the branches will be taken from the same tree as the root or
from other dialects. Consolidation is a process of standard-

A Pattern of Language Evolution

ization, either formal or informal. Consolidation, when most
successful, results in a stable development platform.

The cycle is not inexorable: the process can break down,
stop and start, and cycles can be skipped. But it is possible
to view the process of evolution at any point as being within
one of these stages of the cycle, with the goal of moving to
the next stage.

Each stage can be characterized by the conditions that
allow it to be entered.

Conditions for Acceptance

The most critical stage is acceptance. This stage determines
which language features and paradigms will be part of the
next stage of stable development. The conditions for ac-
ceptance are being on the right machines, fitting into local
user models, solving a pressing new problem, and having
the right cachet. Each will be explored a bit.

The acceptance stage depends on a particular acceptance
group choosing to base their work on the new dialect. An
example acceptance group comprises a subset of commer-
cial artificial intelligence companies. A particular dialect
of Lisp might be targeted to solve the problems of this com-
munity through, for example, integration with mainstream
languages. Whether this dialect moves on to the next stage
in the cycle—consolidation—depends on whether this ac-
ceptance group chooses to enter a period of acceptance with
the dialect and in fact the dialect passes the acceptance
stage by actually providing solutions

The dialect should run on the right machines. This in-
cludes being on the right manufacturers’ machines. A Lisp
dialect will be accepted when the people who will determine
acceptability can use the dialect right away with proper
performance. This also includes having acceptable size
and performance for the machines. If the key user groups
are using computers of a certain size and speed, the Lisp
dialect should run acceptably on that configuration. This is
complicated by the fact that the designers or promoters of
a dialect will sometimes choose the initial target computer
with an eye only toward the total number of installed com-
puters rather than the more restrictive number of comput-
ers installed or soon-to-be installed in the target user base.

Richard P. Gabriel
IBM Research

Guy L. Steele Jr.
Sun Laboratories

2

For example, Interlisp [5] and NIL [6] fell into disuse when
their promoters chose the wrong computers.

Next is fitting into local user models. Each user group will
have a style of working or set of methodologies within which
the new dialect must fit. Oftentimes a new dialect will be
an extension of an existing one, and unless the acceptance
group is able to embrace the dialect in a timely fashion, the
dialect will not enter the acceptance stage and will unlikely
be part of a consolidation. Sometimes the acceptance group
is newly formed and has no existing working styles or meth-
odologies, and in this case the new dialect should present a
working model acceptable to the acceptance group.

Next is solving timely problems. An acceptance group is
one whose success will determine the acceptance of a dia-
lect if that dialect is required by the acceptance group. The
acceptance group must have a set of needs not addressed
at the time the new dialect would enter this stage; other-
wise the acceptance group would have no need to switch
to the new dialect, and perhaps such a switch would be too
risky for the group. If the group is commercial or has a set
of outside-determined success criteria, that group will be
risk averse, and the new dialect must offer significant per-
ceived value for achieving these criteria. For example, for a
group embarking in a large project with strict productivity
or reuse requirements, a Lisp dialect with a strong object-
oriented component might be readily embraced. A dialect
with marginal or incremental improvements will often not
be accepted.

Finally is cachet. We use the word ‘cachet’ as it is used in
the advertising and fashion industries. A scarf with cachet is
worn by people in the most exclusive and desired echelons of
high society, and so that scarf is highly desired and sought
after. A perfume with cachet is charged / prized, and people
don’t merely want to own it—they want to possess it.

So it is with computers. The best example—though some
might argue with it—is the Macintosh as compared with the
PC. When you look at them objectively, there is consider-
ably more software on the PC, and it is probably used much
more heavily in business than the Macintosh. But there is
something about the Macintosh that appeals to the lead-
ing edge computerist. If you look at most hobbyists—the
ones who rave on and on about how great computers are
and how everyone should have one—they either own a Ma-
cintosh or wish they did. The difference between a PC and
a Macintosh is cachet.

Cachet does not always mean best of breed or most ex-
pensive or most exclusive. A 1967 Ford Mustang has more
cachet than an 2008 Mercedes 300 SE, though the latter is
far more expensive.

Acceptance groups comprise people who must individu-
ally wish to adopt a new dialect. The people who would
use Lisp generally characterize themselves as leading edge.
Therefore, there must be at least some aspects of leading
edge technology in the new dialect. For example, the Com-

mon Lisp Object System (CLOS) [7] lends cachet to Com-
mon Lisp [8]—almost causing Common Lisp with CLOS to
be regarded as a new dialect—because it is perceived as an
advance over mainstream object-oriented programming.

Conditions for Consolidation

Consolidation is the stage during which standards—formal
or informal—are set. Sometimes several dialects are merged
through a combination of a standardization process and
a design rationalization process. When this happens one
dialect will usually be chosen as the base and features from
other accepted dialects will be blended into it.

The conditions for entering consolidation are that the
dialect or dialects have been accepted, that the acceptance
group is in ascendency, and that the dialect is perceived
to have helped the acceptance group and will continue to
help.

First, the dialect must be accepted. This implies not only
that the dialect met the functional needs of the group—its
features were useful—but that the dialect fit well into the
group and met its performance and size goals.

Next, the acceptance group must be poised for growth.
This is an important external factor for the success of a dia-
lect of Lisp, and possibly for other languages. The user group
that would use the language must itself be successful or be
perceived to about to be successful. Thus, a language faces
a double hurdle: to succeed with a particular group and to
have appealed to a group that will itself succeed. When cou-
pled with the conditions for entering the acceptance stage,
this implies that the language must also have succeeded in
choosing the right target platform.

Furthermore, when an acceptance group is growing or
about to grow, that group will typically be growing in size
and in geographical extent, and so exchanging software be-
comes important. This happens both when the acceptance
group is commercial and when it is research oriented.

Finally is the perceived contribution of the dialect to
the success or success conditions of the acceptance group.
That is, the acceptance group must either be successful or
be perceived to about to be successful, and the dialect must
appear to have contributed to that situation. It is usually
not sufficient that the acceptance group succeed or that the
dialect have been merely useful to the effort that put the ac-
ceptance group where it is: the dialect must be perceived
as a necessary part of the effort. Otherwise the acceptance
group will be tempted to reevaluate the language decision,
and in the case of Lisp, once this reevaluation is entered
upon, it is difficult for Lisp to be retained.

Conditions for Diversification

Diversification happens when old solutions are inadequate
or when there is nothing else to do. The conditions for en-

3

tering diversification are that external driving factors are
languishing, that there is a retreat to smaller research or
development groups, and that the previous dialects have
failed in some way.

First, when the acceptance group is in descendency, there
are fewer resources to allocate for language implementation
improvement and incremental design. When a language
has been through the consolidation stage, it is subject to
incremental improvement through implementation and
design improvements: performance or size can be improved,
and some new, minor language features can be added, but
paradigm shifts require a new cycle of diversification, ac-
ceptance, and consolidation.

The language experts will no longer be obligated to make
these small improvements and will instead turn their at-
tention to solving such problems as those which caused
the acceptance group to decline. Perhaps a new acceptance
group will be targeted along with its problems. Or perhaps
another language or languages will have such cachet or suc-
cess that the old language will be mined for incorporation
into a new dialect.

Next, such retreat creates smaller groups, pockets of lan-
guage groups. Because innovation typically involves small
groups, this is virtually a necessary condition for new design.
The real importance is that the language design groups—
though they might not be called such—will be free from
interruption to pursue their new designs.

Finally, the previous solutions must have had failures
for the acceptance group. If the acceptance group declines
because of extraneous economic factors, for example, there
would be no need to pursue change. However, this has never
stopped those intent on change for change’s sake. Some call
this the I-Did-It-My-Way syndrome.

Diversification comes from many sources. When a lan-
guage fails, there may be attempts to fix the problems by
retreating to earlier principles and redesigning; there may
be another language with a different paradigm that appears
suitable for the solution to problems the dialect failed to
solve, or perhaps the cachet of that language will be irre-
sistible; or pure intellectual or scientific curiosity will lead
a designer down a path that results in new language fea-
tures or paradigms.

Pollenation

Language design and evolution are driven by people, whose
careers carry them from one set of concerns to another. And
like a snowball rolled over a cluttered forest floor, people
pick up influences from the problems they work on. And so
we observe that particular individuals enter and leave the
story of the diversification of Lisp, and when they reappear
after an absence, they have new experiences under their
belts and will apply those experiences. New players appear
and interact as people with others, and the results of those

interactions—the languages—reflect intellectual affinities
to a wide variety of other languages, language concepts and
features, and language paradigms.

Acceptance groups are people, and the whole story of lan-
guage evolution and diversification is against a background
of human concerns and institutions. Despite the fact that
appeal is made to objective criteria for language design, the
inevitable humanness always shines through.

From Lisp 1.5 to PDP-6 Lisp: 1960–1965

These early Lisp dialects fit into the pattern typical of the
diversification stage.

During this period there was little funding for language
work, the groups were isolated from each other, and each
group was directed primarily toward serving the needs of
the local acceptance group, which was limited to a hand-
ful of researchers. The typical situation is characterized
by the description “an AI lab with a Lisp wizard down the
hall.” During this period there was a good deal of experi-
mentation with implementation strategies. There was little
thought of consolidation, particularly in the form of a formal
standards process, partly because of the pioneering feeling
that each lab embodied.

The first real standard Lisps were MacLisp [9] and In-
terlisp.

ERRSET and CATCH

The lesson of ERRSET and CATCH is important.
Lisp 1.5 had a function called ERRSET, which was useful

for controlled execution of code that might cause an error.
The special form

(ERRSET form)

evaluates form in a context in which errors neither termi-
nate the program nor enter the debugger. If form does not
cause an error, ERRSET returns a singleton list of the value.
If execution of form does cause an error, the ERRSET form
quietly returns NIL.

Mac Lisp added the function ERR, which signals an error.
If ERR is invoked within the dynamic context of an ERRSET
form, then the argument to ERR is returned as the value of
the ERRSET form.

Programmers soon began to use ERRSET and ERR not
to trap and signal errors but for more general control pur-
poses (dynamic non-local exits). Unfortunately, this use of
ERRSET also quietly trapped unexpected errors, making
programs harder to debug. A new pair of primitives, CATCH
and THROW, was introduced into MacLisp in June 1972 so

4

that ERRSET could be reserved for its intended use of er-
ror trapping.

The designers of ERRSET and ERR had in mind a par-
ticular situation and defined a pair of primitives to address
it. However, the construction of these primitives is in two
parts: one part that traps and ignores errors, and another
part that transfers control to a dynamically earlier point.
Because there were no other such non-local control trans-
fer primitives, programmers began to use the existing fa-
cilities in unintended ways. Then the designers had to go
back and split off the desired functionality. The pattern of
design (careful or otherwise), unintended use, and later
redesign is common.

MacLisp was written as a large assembly language core,
an interpreter, and a compiler. The developers of MacLisp
were both consolidating some of the ideas from other lan-
guages, typically by rationalization, and were diversifying
the language with new data structures.

The next phase of MacLisp development began when the
developers of MacLisp started to see a large and influential
acceptance group emerge—Project MAC and the Mathlab/
Macsyma [10] group. The emphasis turned to satisfying the
needs of their user community rather than doing speculative
/ exploratory language design and implementation.

MacLisp

MacLisp can be seen as one consolidation of the flurry of
Lisp implementations in the early 1960s. There was a par-
ticular acceptance group—Project MAC—that drove con-
solidation into a stable, high performance implementation
of a derivative of Lisp 1.5. Therefore, we can see the first
example of the cycle: diversification during the Lisp 1.5
era, acceptance at the start of the MIT Project MAC era,
consolidation during the heyday of Project MAC, and, af-
ter, a decline of funding for Lisp at MIT preceding a period
of diversification.

During the period from 1969 until 1981, MacLisp enjoyed
several acceptance groups: from 1969 until around 1973 it
was the AI Lab, in particular the vision group. From about
1972 until around 1981 it was the Mathlab/Macsyma group,
though the earlier Mathlab group under William Martin
had been a strong influence before 1972.

The AI Lab conducted research into artificial intelli-
gence generally, but it focussed on vision, robotics, natural
language, planning, and representation. In addition there
was some interest in language design for AI, as exempli-
fied by Carl Hewitt, Terry Winograd, Gerry Sussman, and
Guy Steele.

The Mathlab and Macsyma groups were interested in
symbolic mathematics, which is a discipline that develops
algorithms, data structures, and programs to symbolically
manipulate the structures and concepts of mathematics.
For example, symbolic differentiation (as opposed to nu-

meric differentiation) was one of the first symbolic math-
ematics programs.

From roughly 1972 to 1983 the support for MacLisp was
provided by the Macsyma group which had Department of
Energy (DoE) funding for supporting the Macsyma Consor-
tium and for some new development. The Macsyma Consor-
tium was a group of institutions, for example Lawrence Liv-
ermore National Laboratories, that used Macsyma for their
work. Generally these members were also funded by DoE.

Thus MacLisp had an acceptance group, which had
accepted MacLisp as its standard. Nevertheless, because
MacLisp ran only on PDP-10s [11], there was little need
to standardize the language through consolidation with
other dialects.

At that time, MacLisp had adopted only a small number
of features from other Lisp dialects. In 1974, about a dozen
people attended a meeting at MIT between the MacLisp and
Interlisp implementors, including Warren Teitelman, Alice
Hartley, Jon L White, Jeff Golden, and Guy Steele. There was
some hope of finding substantial common ground, but the
meeting actually served to illustrate the great chasm sepa-
rating the two groups, in everything from implementation
details to overall design philosophy. (Much of the unwilling-
ness of each side to depart from its chosen strategy probably
stemmed from the already severe resource constraints on
the PDP-10, a one-megabyte, one-MIPS machine. With the
advent of the MIT Lisp Machines, with their greater speed
and much greater address space, the crowd that had once
advocated a small, powerful execution environment with
separate programming tools embraced the strategy of writ-
ing programming tools in Lisp and turning the Lisp environ-
ment into a complete programming environment.) In the
end only a trivial exchange of features resulted from “the
great MacLisp/Interlisp summit”: MacLisp adopted from
Interlisp the behavior (CAR NIL) → NIL and (CDR NIL) →
NIL, and Interlisp adopted the concept of a read table.

The adoption of the Interlisp treatment of NIL was not
received with universal warmth. We quote the public an-
nouncement by Jon L White:

For compatibility with Interlisp (foo), the CAR
and CDR of NIL are always but always NIL. NIL
still has a property list, and GET and PUTPROP
still work on it, but NIL’s property list is not its CDR
(crock, crock). The claim is that one can write code
such as (CADDR X) instead of the more time- and
space-consuming (AND (CDR X) (CDDR X) (CADDR
X)) and so on. Send complaints to GLS, but I doubt
it will do you any good.

A few words of explanation are in order. In MacLisp, CDR
applied to an atomic symbol returned the symbol’s prop-
erty list. With this change, the symbol NIL becomes unlike
all other symbols in there being no way to get its property

5

list. That CDR happened to work this way on symbols was
an accident of implementation that users began to rely on
heavily—this is another example of the unintended use of a
feature that we saw with ERRSET and ERR. The contract for
CDR, then, was not uniform: when applied to dotted pairs
it did one thing, and when applied to symbols it did an ab-
stractly unrelated thing that happened to be implemented
by the same machine instruction. The solution was to com-
plete the set of abstract operations for property lists; PLIST
and SETPLIST were introduced to MacLisp in 1975, about
nine months after the Interlisp compatibility change, so that
CDR and RPLACD need not be used on symbols.

Documentation at that time was not exactly what we are
used to today. The following were the only sources of infor-
mation about MacLisp that users could reference:

The original PDP-6 Lisp manual and an update. [12]1.
LISP ARCHIV2. [13], a complete on-line log listing each
newly added and deleted feature of the language.
With each new release of MacLisp, release notes were
prepended to the log. This file was maintained from
1969 until 1981, when Jon L White left MIT for Xerox.
(The strange spelling is a consequence of the design of
ITS, which limited file names to two components of at
most 6 character each. On TOPS-10, with its 6-and-3
limits and different punctuation, the file was called
LISP.ARC.)
The 1974 edition of the MacLisp Manual, written by Da-3.
vid A. Moon as part of the effort to put MacLisp up on
Multics. This valuable document was usually referred
to orally as the “Moonual.”
A short history of MacLisp published by Jon L White.4.
The Revised MacLisp Manual5. by Kent Pitman, written
in 1983. [14]

“The wizard down the hall”: implementors Jon L White 6.
and Guy Steele at MIT, and local MacLisp gurus such
as Richard P. Gabriel at Stanford University, Rodney
A. Brooks at Flinders University in Australia, David
Touretzky at CMU, and Timothy Finin at the University
of Illinois. Like the exiles in Ray Bradbury’s Fahrenheit
451, these perhaps fanatical hackers were the docu-
mentation and would recite necessary information on
request—a deplorable situation, perhaps, from today’s
perspective, but workable in a small community work-
ing with a rapidly changing piece of software.
The source code. Part of the spirit of the MacLisp com-7.
munity was the knowledge that when there was any
doubt about what the language did, one could read
the code.

Note that MacLisp ran primarily on PDP-10s, and there
was a single, central set of source code files, so its relative-
ly small and tightly knit community felt little need for a
separate, complete language specification. (The Moonual,

produced when MacLisp began to straddle two machine
architectures, is the exception that proves the rule; but
the rule stood, for the PDP-10 enclave regarded the Multics
community as outsiders, welcome to try to keep up as new
changes were announced in LISP ARCHIV. The Moonual was
not revised for another nine years, when Kent Pitman pro-
duced what became known as the “Pitmanual.”

The Interlisp effort, by contrast, produced a comprehen-
sive reference manual for its more far-flung user community
and a separate virtual machine specification that aided in
porting Interlisp to different computer architectures. As
the MacLisp community metamorphosed into the MIT
Lisp Machine community, better documentation became
a necessity and eventually appeared, thanks again to David
Moon, this time with Daniel Weinreb. [15] (This one was
called the “chine nual” (pronounced sheenual) because the
title Lisp Machine Manual in big block letters was wrapped
around the entire paperback cover so that only those letters
showed on the front.)

Several other programming languages were developed
within MacLisp: Micro-Planner [16], Conniver [17], and
Scheme [18] to name a few. Several object-oriented exten-
sions to MacLisp were tried out, including Extend and Fla-
vors. Extend is a mechanism to extend the built-in Lisp
type system using inheritance, and Flavors was a multiple
inheritance, multi-method object-oriented addition to Lisp
machine Lisp, which would become a major influence on
the Common Lisp Object System (CLOS).

By the mid-1970s it was becoming increasingly apparent
that the address space limitation of the PDP-10—256k 36-bit
words, or about one megabyte—was a severe constraint as
the size of Lisp programs grew. MacLisp by this time had
enjoyed nearly 10 years of strong use and acceptance within
its somewhat small but very influential user community.
Its implementation strategy of a large assembly language
core would prove to be too difficult to work with for other
computers, and intellectual pressures from other dialects,
other languages, and the language design aspirations of its
implementors would result in new directions for Lisp.

To many, the period of stable MacLisp use was a gold-
en era in which all was right with the world of Lisp. (This
same period is also regarded today by many nostalgics as
the golden era of Artificial Intelligence.) By 1980 the ac-
ceptance group for MacLisp was on the decline—the fund-
ing for Macsyma would not last too much longer. Various
funding crises in AI had depleted the ranks of the AI Lab
Lisp wizards, and the core group of wizards from MIT and
MIT hangers-on moved to new institutions. The late part
of the 1970s and early part of the 1980s was a period of di-
versification.

Several names we have seen will reappear in the post-
MacLisp period—White, Steele, Moon, Greenblatt, McCa-
rthy, Deutsch, Bobrow, and Gabriel—and the rest will dis-
appear.

6

MacLisp versus Interlisp

MacLisp and Interlisp came into existence about the same
time and lasted about as long as each other. They differed
in their acceptance groups, though any generic descrip-
tion of the two groups would not distinguish them: both
groups were researchers at AI labs funded primarily by
ARPA (later DARPA), and these researchers were educated
by MIT, CMU, and Stanford. The principal implementations
ran on the same machines, and one had cachet as the Lisp
with the nice environment while the other was the lean,
mean, high-powered Lisp. The primary differences came
from different philosophical approaches to the problem
of programming. There were also different pressures from
their user groups; MacLisp users, particularly the Mathlab
group, were willing to use a less integrated programming
environment in exchange for a good optimizing compiler
and having a large fraction of the PDP-10 address space left
free for their own use. Interlisp users preferred to concen-
trate on the task of coding by using a full, integrated devel-
opment environment.

The MacLisp philosophy centered on a high quality imple-
mentation, performance, text editors, and language expres-
siveness. The Interlisp philosophy centers on the program-
ming environment and the task of coding—back then they
would call it the task of programming.

MacLisp was a filed-based, text-editor-oriented environ-
ment, while Interlisp was residential with an in-memory
(in-core) Lisp structure editor. The MacLisp environment
used external tools linked loosely together, while the In-
terlisp environment was tightly coupled with the language
implementation—in fact, the environment and the language
shared the same address space, and actually were part of
the same program.

The Interlisp philosophy was developed largely by War-
ren Teitelman in the middle 1960s, at which time there were
very few large screen terminals—the printing teletype-type
terminal was most common. And the primary text editors
were “tape editors.” A tape editor is a text editor that oper-
ates on the text as if it were a long linear tape. Commands
moved focus backwards and forwards on the tape, either by
certain distances or by searching. Text could be inserted and
deleted. One popular editor at the time, TECO, was originally
called the Tape Editor and Corrector (later Text Editor and
Corrector). In short, the process of entering and correcting
code was very difficult outside the Interlisp environment,
and so the goal of the Interlisp development environment
was to simplify and shorten that process—even typing code
was difficult and so shortcuts were sought.

Teitelman’s approaches were new and exciting, and cer-
tainly they improved coding productivity.

The alternative, MacLisp, had certain advantages as well.
Because the language implementation was file-based and
text-based, the development environment was captured by

independent external tools, which could follow their own
evolutionary process, and MacLisp programmers could
simply inherit the benefits. Until Emacs appeared, though,
there were few benefits to be had.

When tools are separate, the user does not need to accept
a set of tools along with the language. When the alternative
is consolidated package, the risk is that the environmental
tools might be unsuitable, and so the cost of choosing a lan-
guage plus environment might be too high for some.

However, MacLisp programmers wished to have their
productivity improved—actually, they probably didn’t care
about productivity, they simply wanted their job simplified
and made more fun. The result was that MacLisp developers
focussed more on the language itself, adding macros and
new data structures, and improving performance.

Another set of differences in philosophy lies in pretty-
printing. The following is an example of the definition of the
function, MEMBER, in Lisp 1.5. It is reproduced exactly as
it appeared in the Lisp 1.5 Programmer’s Manual:

DEFINE((

(MEMBER (LAMBDA (A X) (COND ((NULL X) F)

 ((EQ A (CAR X)) T) (T (MEMBER A (CDR X))))))

))

The same program written in Common Lisp today would
look like this:

(defun member (element list)

 (cond ((null list) ())

 ((eq element (first list)) t)

 (t (member element (rest list)))))

Notice the modern indentation is designed to clarify the
relations between significant portions of the code. The old
style appears to have no design.

This intermediate example is derived from a 1966 cod-
ing style:

DEFINE((

 (MEMBER (LAMBDA (A X) (COND

 ((NULL X) F)

 ((EQ A (CAR X)) T)

 (T (MEMBER A (CDR X))))))

))

The design of this style appears to take the name of the func-
tion, the arguments, and the very beginning of the COND
as an idiom, and hence they are on the same line together.
The branches of the COND clause line up, which shows the
structure of the cases considered.

With MacLisp, the style of indentation was consciously
evolved, because programmers themselves were responsi-
ble for doing the indentation, at least until text editors like

7

Emacs added semi-automatic indentation facilities. Program
code was viewed by text editors and on printout, while in
Interlisp program code was primarily, but not exclusively,
viewed on the screen.

Interlisp provided a pretty-printer that would take the
in-memory program and dump it to a file or to the termi-
nal. The structure editor used the pretty-printer to show
program code. Though the pretty-printer was crudely pro-
grammable, few people customized it. Because MacLisp
had a pretty-printer while programmers had developed
their own pretty-printing style, the pretty-printer had to
be programmable, and it was.

Of course, Interlisp developers improved Interlisp, but
the primary language improvements were spaghetti stacks
(and hence a sort of dynamic closure), the record package,
and field-based structure. In terms of performance, Interlisp
developers added block compilation and using more than
one PDP-10 address space.

However, the primary mechanisms for language exten-
sions were through the environment. DWIM (Do What I
Mean), the spelling corrector, and CLISP (Conversational
Lisp) served to define a new language by changing the sur-
face syntax and tolerating certain types of errors. [5]

As a result, there were fewer language experiments and
more environment experiments in Interlisp, while the op-
posite was true in MacLisp. These two dialects were the
primary dialects throughout the 1970s and into the 1980s,
yet when the big consolidation of the early 1980s took place,
MacLisp and MacLisp derivatives provided by far the stron-
gest influences. This is due to the stagnation of the core Lisp
language within Interlisp. This stagnation was the price of
environmental attention by the Interlisp developers.

Of course, there were other factors in Interlisp’s demise,
not the least of which was the belief by its champions that
Interlisp was enjoying excellent health and new prospects
up to the very end.

Interlisp also represented a consolidation after diversifi-
cation and acceptance, and its later diversification activities
centered around the environment and not the core language.
Unlike MacLisp, the developers of Interlisp tried to spread
Interlisp through porting it to other machines, while the
MacLisp developers—each off at new institutions and try-
ing out new language ideas—were diversifying by making
new designs and new variants of Lisp.

Minor Post-MacLisp/Interlisp Lisps

Standard Lisp [19] and Portable Standard Lisp (PSL) [20]
represented a consolidation of ideas with the primary focus
of delivering a particular program, Reduce [21], to a range
of users who used among them a variety of Lisp dialects.
The users of Reduce were on the rise and eager to use it.
These two dialects were seen as necessary for the spread of
the useful Reduce system. Standard Lisp was an attempt

to piggyback on existing Lisps, while PSL represented an
attempt to control performance a little better.

UCI Lisp [22] was an adaptation of Interlisp to a simple
Lisp 1.6 [23] base, and so we can regard this as part of the
consolidation of Interlisp.

Lisp 1.6 itself disappeared during the mid-1970s, it being
one of the last remnants of the Lisp 1.5 era.

Post-PDP-10

The PDP-10 was designed in such a way that the early dia-
lects of Lisp could be implemented quite well on them:
CONS cells fit into one word because memory addresses
were 18 bits and words were 36 bits, there were convenient
halfword manipulation instructions, and the function call-
ing mechanism was amenable to Lisp.

With the advent of the Digital Equipment Corporation
Vax [24] this changed. There were no easy matches between
Lisp data structures and Vax architectural facilities. Fur-
thermore, the preferred Vax procedure call instructions did
not fit well with the new style of MacLisp-like Lisp dialects:
each of these dialects supported a variable number of ar-
guments, and the Vax instruction set supported well only
function calls with a fixed number of arguments, though
there were several ways to cobble together an effective func-
tion call implementation for Lisp. At a time when other
languages such as C and FORTRAN were learning to talk
to each other, however, this provided yet one more impedi-
ment to Lisp’s joining the crowd.

At the end of the 1970s, no new commercial machines
suitable for Lisp were on the horizon; it appeared that the
Vax was all there was. Despite years of valiant support by
Glenn Burke, Vax NIL never achieved widespread accep-
tance. Interlisp/VAX was a performance disaster. “Gen-
eralpurpose” workstations (i.e., workstations intended or
designed to run languages other than Lisp) and personal
computers hadn’t quite appeared yet. To most Lisp im-
plementors and users, the commercial hardware situation
looked quite bleak.

But from 1974 onward there had been research and pro-
totyping projects for Lisp machines, and at the end of the
decade it appeared that Lisp machines were the wave of
the future.

At that point we had the situation where the natural ac-
ceptance groups for MacLisp were on the decline, but the
acceptance groups of Interlisp were on the ascendency; these
groups were the commercially minded AI groups that were
about to be incorporated. Interlisp ran on a set of machines
that were accepted by the commercial acceptance groups,
and it fit their style of work. The new Lisp machines for In-
terlisp had a decided cachet. Things are ripe for Interlisp

8

to claim the right of consolidation, perhaps even winning
over MacLisp users.

MacLisp was entering a phase of diversification with the
various Lisp-Machine dialects. It appeared that the Lisp
machines were too new to be readily acceptable; and their
new development environments were maybe too much of
a change from the old-style MacLisp development to move
into an acceptance phase. But they did have cachet.

The race was to see who would choose the machine or
machines with the right characteristics to help theirLisp
succeed. The immediate question was whether the Vax
would be the right machine, the Lisp machines would be
(and which one), or a machine then unknown. It would turn
out to be a then-unknown machine.

Notice that Franz Lisp [25] and PSL have nothing to offer
the new acceptance groups except for portability, and each
Lisp was a throwback to earlier MacLisp times. Though por-
tability appears to be an important survival characteristic,
without some cachet there was little hope for a dialect.

Scheme represents an interesting variation on our cycle
theme. Gerry Sussman had always been involved with a va-
riety of language groups: the MDL (or Muddle) group, the
Micro-Planner group, and the Conniver group. After Scheme
he would work on constraint languages. His target audience
was himself along with those researchers who were involved
in work related to Sussman’s work or researchers who wish
to use one of Sussman’s languages.

Sussman’s work always had cachet (it seemed)—from
Micro-Planner to Conniver to Scheme—and so his work al-
most always gained acceptance, but the acceptance groups
did not have strong presence, so these ideas did not always
catch on.

Surprising was the exception of MDL: Sussman belonged
to this group but MDL [26] itself did not catch on, and at
MIT it was not highly regarded. Nevertheless, a great many
ideas from MDL caught on in Conniver and then Lisp-Ma-
chine Lisp. We still see these ideas hard at work in Com-
mon Lisp and to some extent in EuLisp. [27] Yet how many
people who use these languages know of MDL, or its prime
designer Chris Reeves?

Thus, Sussman was during the 1970s a diversification
generator whose languages had acceptance/consolidation
phases that were quite short, given the small acceptance
audience.

In the global context, Scheme would provide concepts
that would be used during the consolidation phases of other
dialects. Scheme in the 1980s had one primary acceptance
group, along with the potential of some others. The primary
acceptance group for Scheme was the set of authors of the
various revised reports on Scheme.

Early Lisp Machine History

The MIT Lisp machine project represented a consolidation
of the diversification demonstrated by MacLisp, MDL, and
Conniver. Some new extensions and some adaptations from
other sources were made.

The acceptance group was still the local researchers, but
during the 1980s that would change: the new acceptance
group would become the commercial developer and corpo-
rate research lab. The acceptance battle would center around
the factors of acceptable computer hardware and acceptable
work process. Included in the work process was the nature,
cost, and availability of Lisp programmers.

The Xerox Lisp machines represented porting, which is
what happens when the language is essentially stagnant.
Acceptance of Interlisp would now hinge on its choice of
machine. There would be two real contenders for the ac-
ceptable machine—the Vax and the D-machines (Dolphin,
Dorado, and Dandelion). No Lisp whose success depended
on the Vax would survive the 1980s. It would be a race be-
tween the D-machines, and the MIT-derived Lisp machines
in the early 1980s, and the great consolidation started in the
early 1980s would completely change the nature of the game.
MacLisp and Interlisp would soon both be dead, and Lisp
machine Lisp in its pure form along with them.

It is important to realize that the cachet of Lisp through
the existence of Lisp machines was on the rise. The accep-
tance group would soon also be on the rise, and the feeling
was that technology would triumph under the careful guid-
ance of the Lisp machine designers and developers. Compa-
nies would form to ride the wave of AI and Lisp technology,
consuming large quantities of venture capital. This was the
first—and until today the only—plausible attack mounted
on fortress FORTRAN-machine. As we know, that attack
would fail, and discovering the reasons may teach us (Lisp
people) a lot about ourselves as computing professionals,
and as people.

Freed from the address-space constraints of previous
architectures, all the Lisp machine companies produced
greatly expanded Lisp implementations, adding graphics,
windowing capabilities, and mouse interaction capabilities
to their programming environments. The Lisp language it-
self, particularly on the MIT Lisp Machines, also grew in the
number and complexity of features. Though some of these
ideas originated elsewhere, their adoption throughout the
Lisp community was driven as much by the success and
cachet of the Lisp machines as by the cachet of the ideas
themselves.

Nevertheless, for most users the value lay ultimately in
the software and not in its enabling hardware technology.
The Lisp machine companies ran into difficulty in the late
1980s, perhaps because they didn’t fully understand the con-
sequences of this fact. General-purpose hardware eventu-
ally became good enough to support Lisp once again, and

9

Lisp implementations on such machines began to compete
effectively.

IBM Lisps

Although the first Lisps were implemented on IBM comput-
ers, IBM faded from the Lisp scene during the late 1960s, for
two reasons: better cooperation between MIT and DEC and
a patent dispute between MIT and IBM.

Nevertheless, Lisp was implemented at IBM for the IBM
360 and called Lisp360. When the IBM 370 came out, Lisp370
implementation began. Lisp370 was later called Lisp/VM.

The Yorktown Heights Lisps were based on a diversifi-
cation surrounding the local acceptance group at the T. J.
Watson Research Laboratory. In particular, this group con-
sisting of Fred Blair, Richard W. Ryniker II, Cyril Alberga,
Mark Wegman, and Martin Mikelsons served primarily
themselves and a few research groups, such as the Scratch-
pad group and some AI groups.

This group had visitors that influenced the direction of
diversification. For example, Allen Brown who was at the
MIT AI Lab worked at Yorktown from 1975 to 1978, Jon L
White worked there during the 1977 calendar year. Richard
Gabriel worked during the summer of 1976 on the Lisp370
programming environment (though he was physically at
the IBM research center in San Jose, California).

Acceptance was local and noncontroversial, but consoli-
dation along with diversification was determined by influ-
ence from employees who came from other environments.
In addition to the ones listed, Mark Wegman was a more
recent addition to the team than the others, and his arrival
coincided with a broader vision of the programming envi-
ronment than Gabriel introduced.

The 370 never had any cachet except as the natural tar-
get of commercialization. It would turn out that even with
the immensely popular (for a time) Common Lisp, the 370
never figured as much of a player in the success of Lisp. No
one from the natural acceptance group for a Lisp consid-
ered the 370 a proper machine with a usable environment,
even though Lisp370 certainly provided a nice development
environment.

This brings up an interesting point. The AI companies
like Intellicorp, Inference, and Teknowledge all targeted the
Fortune 500 companies, particularly those that used 370s as
their workhorses. Each AI company predicted that its own
fortunes would rise if they could only get their products on
the 370. Yet, except for Aion, this never made much differ-
ence to the AI companies.

Most of the other companies built large expert system
shells, which could then be programmed to solve particular
problems. These solutions usually required the aid of the
AI companies to create.

One could argue that the Lisp-based AI solutions pro-
duced by the AI companies failed to have a major impact

because the solutions were written in Lisp. But, had the
solutions been adequate, the underlying language would
have made no difference. Perhaps from the perspective of
AI, AI itself did not have the cachet that the AI companies
believed it should have, and so these sorts of solutions were
not accepted.

Or, perhaps, the cachet was there, but was irrelevant.
Cachet is leading edge, and some organizations are not in-
terested in leading edge, but in the safe course. These com-
panies buy IBM PC’s, and IBM 370s as well. The cachet of
the Macintosh does not affect them, and neither does the
cachet of AI.

Remember, cachet is a relationship between a thing that
has it, and a person who wants it.

Common Lisp and CLOS

Common Lisp was the ultimate consolidation—taking ideas
from just about all the post-MacLisp Lisps and some from
Interlisp. Market forces dominate acceptance groups. The
acceptance group for Common Lisp—commercial AI com-
panies—went on the decline in 1989, and a flurry of diver-
sification took place in terms of changes to Common Lisp,
additions to Common Lisp, and EuLisp finally emerging
(Europe was hit with AI winter first). Some parts of the
acceptance group headed for Scheme because of size and
simplicity.

Consolidation of Common Lisp caused Interlisp to die.
Cachet of Lisp machines first and Suns later pushed Com-
mon Lisp ahead. The post-AI-winter era shrunk things down
to small Lisp groups again, so, at that time, we expected a
period of diversification.

AI companies blamed AI winter on the Lisp groups who
did not provide delivery solutions, but the AI companies
never communicated their needs to the Lisp companies,
because of fear of collaboration (a common but stupid phe-
nomenon that happens when academics (try to) become
business people).

CLOS was a consolidation itself, and it had added a ca-
chet to an otherwise stagnant Common Lisp.

Environments for Lisp never really were standardized,
though the AI companies largely provided an environment
plus a big library of user interface and AI stuff.

Postface

The year 1993 was the last year covered in our history pa-
per. Since then Lisp has gone into a bit of a slumber from
which only in 2005 did it start to awaken. Of course it was
never completely dead, but the world turned beginning in
the mid-1990s to object-oriented programming in general
and to Java in particular.

Many of the ideas in Lisp and in CLOS made their way into
Java and more importantly into a raft of so-called “script-

10

ing languages” that followed on, such as Perl, Python, PHP,
Javascript, and Ruby. If this can be taken as a diversification,
the pattern we posited continues to this day.

References

[1] Steele, Guy L., Jr., Gabriel, Richard P., The Evolution of
Lisp, Proceedings of the second ACM SIGPLAN con-
ference on History of programming languages, 1993.

[2] http://dreamsongs.com/Files/HOPL2-Uncut.pdf

[3] McCarthy, John, Abrahams, Paul W., Edwards, Daniel
J., Hart, Timothy P., Levin, Michael I., LISP 1.5 Pro-
grammer’s Manual, MIT Press, Cambridge, Massa-
chusetts, 1962.

[4] McCarthy, John, “History of LISP,” In Wexelblat, Rich-
ard L., ed., History of Programming Languages, ACM
Monograph Series, chapter IV, pp. 173–197, Academic
Press, New York, 1981, ISBN 0-12-745040-8.

[5] Teitelman, Warren, et al., Interlisp Reference Manual,
Xerox Palo Alto Research Center, Palo Alto, Califor-
nia, October 1978, Third revision.

[6] Burke, G. S., Carrette, G. J., and Eliot, C. R., NIL Refer-
ence Manual, Report MIT/LCS/TR-311, MIT Labora-
tory for Computer Science, Cambridge, Massachu-
setts, 1983.

[7] Bobrow, Daniel, DeMichiel, Linda G., Gabriel, Rich-
ard P., Keene, Sonya, Kiczales, Gregor, Moon, David,
The Common Lisp Object System Specification, Tech-
nical Document 88-002R of X3J13, LASC and SIG-
PLAN Notices, June 1988.

[8] Steele, Guy L., Jr., Fahlman, S. E., Gabriel, R. P., Moon,
D. A., Weinreb, D. L., Common Lisp: The Language,
Digital Press, Burlington, Massachusetts, 1984.

[9] Moon, David A., MacLISP Reference Manual, MIT
Project MAC, Cambridge, Massachusetts, April 1974.

[10] Mathlab Group, MACSYMA Reference Manual (Ver-
sion Nine), MIT Laboratory for Computer Science,
Cambridge, Massachusetts, 1977.

[11] Digital Equipment Corporation, Maynard, Massachu-
setts, PDP-10 Reference Handbook, 1969.

[12] Digital Equipment Corporation, Maynard, Massachu-
setts, Programmed Data Processor–6 Handbook, 1964.

[13] White, Jon L, et al, LISP ARCHIV, on-line archive of
MacLisp release notes, 1969–1982.

[14] Pitman, Kent M., The Revised MacLISP Manual, MIT/
LCS/TR 295, MIT Laboratory for Computer Science,
Cambridge, Massachusetts, May 1983.

[15] Weinreb, Daniel L., Moon, David A., LISP Machine
Manual, Third Edition, MIT Artificial Intelligence
Laboratory, Cambridge, Massachusetts, March 1981.

[16] Sussman, Gerald Jay, Winograd, Terry, Charniak, Eu-
gene, Micro-PLANNER Reference Manual, AI Memo
203A, MIT Artificial Intelligence Laboratory, Cam-
bridge, Massachusetts, December 1971.

[17] Sussman, Gerald Jay, McDermott, Drew Vincent,
Why Conniving is Better than Planning, AI Memo
255A, MIT Artificial Intelligence Laboratory, Cam-
bridge, Massachusetts, April 1972.

[18] Steele, Guy Lewis, Jr., Sussman, Gerald Jay, The Re-
vised Report on SCHEME: A Dialect of LISP, AI Memo
452, MIT Artificial Intelligence Laboratory, Cam-
bridge, Massachusetts, January 1978.

[19] Marti, J., Hearn, A. C., Griss, M. L., Griss, C., Standard
Lisp report, ACM SIGPLAN Notices, 14:10, pp. 48–68,
October 1979.

[20] Utah Symbolic Computation Group, The Portable
Standard LISP Users Manual, Technical Report TR-10,
Department of Computer Science, University of Utah,
Salt Lake City, January 1982.

[21] Hearn, A. C., REDUCE 2: A system and language for
algebraic manipulation, Proc. Second Symposium on
Symbolic and Algebraic Manipulation, pp. 128–133,
Los Angeles, March 1971.

[22] Bobrow, Robert J., Burton, Richard R., Lewis, Daryle,
UCI-LISP Manual (An Extended Stanford LISP 1.6
System), Information and Computer Science Techni-
cal Report 21, University of California, Irvine, Irvine,
California, October 1972.

[23] unknown, PDP-6 LISP (LISP 1.6), AI Memo 116, MIT
Project MAC, Cambridge, Massachusetts, January
1967; revised as Memo 116A, April 1967; the report
does not bear the author’s name, but Jeffrey P. Golden
attributes it to Jon L White.

[24] Digital Equipment Corporation, Maynard, Massachu-
setts, VAX Architecture Handbook, 1981.

[25] Foderaro, J. K., Sklower, K. L., The FRANZ Lisp Manu-
al, University of California, Berkeley, California, April
1982.

[26] Galley, S.W., Pfister, G., The MDL Language, Program-
ming Technology Division Document SYS.11.01, MIT
Project MAC, Cambridge, Massachusetts, November
1975.

[27] http://people.bath.ac.uk/masjap/EuLisp/

