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What is this?

In 1976 or so I helped my then-wife, Kathy Tracy, and her friend Elaine Montague with their Physical
Therapy Master’s dissertation. I wrote a program that did gait diagnosis (walking problems). Barbara
Kent was the professor who was expert in such diagnoses. They came up with the rules, tuning them
on lots of cases. I wrote the code in Lisp.

The original dissertation was written in POX (Prototype Overlay Xerographics), designed and imple-
mented by Robert E. Maas. It became available around the same time as Tex, perhaps a little earlier. I
translated the files to Tex.

This file is actually the paper that we published in the Physical Therapy & Rehabilitation Journal.
Submitted: June 16, 1977; accepted: April 14, 1978; published: March 1, 1979.

Abstract
A computer program was developed to aid in the diagnosis of orthopedic gait disorders. The processes
involved in designing and implementing the program are described, as well as the program’s method of
operation. Themain features of the program include: a knowledge base composed of facts about orthopedic
gait organized into premise-conclusion pairs; a goal directed reasoning chainwhich causally relates the facts;
and a symbolic structurewhich allows limited English discourse between the user and the computer. Results
of the research indicate that the complex area of gait analysis does lend itself to diagnosis by computer, and
that this prototype has potential as an aid to physical therapists in the classroom and in the clinic.

Introduction
Computer technology has become an integral part of the health care system and its influence will continue
to grow with technological advancement. A review by Barnett, [Barnett 1968] emphasizing the growth of
computer applications in the medical field, offers a thorough explanation of technological implementation
in several major areas of health care. Among the areas discussed by Barnett, computerized medical diag-
nosis seems to present the greatest potential for growth and further development. Such medical programs
were originally designed for physicians to aid in the diagnosis of disease. In practice, however, diagnostic
programs were primarily used bymedical students. Somemedical schools have incorporated computerized
diagnostic programs as self-instruction aids into their curricula [Entwisle 1963] [Feurzeig 1964].

The two main uses for medical diagnosis programs are clinical and educational. As the diagnostic reli-
ability of such programs increases, and as the cost and size of computers decreases, programs of this type
will be able to help the clinician is diagnosing difficult problems. Often the complexity of a situation or a
forgotten fact may result in an incorrect diagnosis. Computer diagnosticians would always have all of the
relevant information available and would make reliable, repeatable decisions.

Studies showing that self-instruction requires less time to achieve satisfactory performance than tradi-
tional lecture-demonstration instruction [Asklund 1976] [Campbell 1970] [Rutan 1973] support the use of
computer diagnosis programs for students as a faster method of achieving satisfactory performance. Ac-
cording to the Carnegie Commission’s report on computers and higher education, [Rockart 1975] comput-
ers offer advantages over traditional education by giving the learner more control over his learning envi-
ronment and allowing him to be more active in the educational process. Thus, a computerized diagnosis
program could offer the student a more efficient and perhaps more effective method of learning disease
diagnosis, especially as the cost of computer facilities decreases.
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Presently, most computer-assisted diagnosis programs are limited to the domains of physicians and
medical students. [Rockart 1975] [Warner 1961] [Overall 1963] Since physical therapy is concerned with
the systematic diagnosis ofmany orthopedic andneurological problems it is also a likely field for a computer-
assisted diagnosis program. This research project was designed to create a computer program to aid in the
diagnosis of orthopedic gait disorders. The following discussion will familiarize the reader with the growth
and change of computer programs used in medical diagnosis, describe the gait diagnosis program and
the processes involved in designing such a program, and hypothesize regarding the applicability of such a
program in the clinic and in the classroom.

History of Computers in Medical Diagnosis
Early computerized medical diagnosis presented many problems to computer and medical specialists. Ac-
cording to Barnett [Barnett 1968] themajor problem resided in inconsistentmethods inconsistently applied
by physicians while establishing a diagnosis. However, in a limited number of cases medical professionals
sufficiently organized their methods of diagnosis to create successful diagnosis programs, as in congenital
heart disease, [Warner 1961] thyroid disease, [Overall 1963] and infectious disease [Shortliffe 1976]. Most
physicians, however, were skeptical of using computer diagnosis programs in clinical practice, and therefore
such use was limited.

Entwistle’s program [Entwisle 1963] is an example of an early medical diagnosis program which was
used specifically as a teaching aid formedical students. Such early programsmerely correlated discrete signs
and symptoms with specific diseases. Diagnosis of a disease was postulated only if a statistically significant
number of symptoms correlatedwith the disease. Entwistle’s programwas equipped to diagnose six possible
diseases. Students were given a list of symptoms about which they could inquire; the computer would
respond ‘yes’ or ‘no’ to specific inquiries depending on which of the six diseases the program had randomly
chosen to diagnose. When the student felt sufficiently informed tomake a diagnosis he could check himself
against the machine’s diagnosis.

Later medical diagnosis teaching programs took slightly different approaches. For example, Feurzig
[Feurzeig 1964] designed a diagnosis program which required the student to inquire about symptoms as
if the student were conducting an orderly physical examination. If the student asked about a symptom
out of the predesignated progression of the physical examination, the computer would refuse to give any
information about that symptom, and it would direct the student to an appropriate symptom. Feurzig’s
program took on a more personal character than Entwistle’s; the yes-no response was replaced by a short
stereotyped phrase and positive reinforcement was given intermittently for correctly proceeding through
the predesignated steps of the physical examination.

All of these early programs shared common problems. According to Weber [Weber 1972] a major ob-
stacle was the inability of the computer to interact directly with the user in English. This problem was
compounded by the fact that most medical professionals were unfamiliar with programming languages.
Shortliffe [Shortliffe 1976] outlined another major limitation in early diagnostic programming: these pro-
grams operated on a purely statistical basis. That is, diagnosis was postulated only if a statistically significant
number of symptoms correlated with the disease; therefore the program itself had no knowledge or under-
standing of the problem area. The program could not explain to users its rationale for certain conclusions,
since that rationale was buried in the statistical analysis and was not part of a logical chain of reasoning.
Due to these problems in the early systems, further development of diagnostic programming reached an
impasse until the late 60’s.

The most important improvement in medical diagnosis programs came with the development of Arti-
ficial Intelligence [AI] [Shortliffe 1976] as a subfield of computer science. The contribution to traditional
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computer science was the attempt at symbolic reasoning—thinking. No longer did a program involve only
arithmetic calculations and/or information storage and retrieval. Programs were being written to solve
problems in a manner similar to that of the human mind; machines could now be programmed to think in
a limited sense and to begin to communicate as a human being.

More specifically, AI offered techniques for organizing a knowledge base built of facts which can be
causally related by a reasoning program and insights into methods which can be used by that program to
accomplish the reasoning. This causal chain of reasoning can then be used to explain the logical connection
between symptoms and diagnoses to the user. Techniques for organizing the knowledge base came from
the development of symbolic rather than numerical programming languages. A symbolic programming
language manipulates abstract symbols rather than arithmetic quantities, and this ability is crucial to the
task of building structures which represent facts in a recognizable form in the computer. Operations such as
searching, pattern matching, and backtracking were found to be useful in modelling human problem solving
behavior, and so provided a simple machine reasoning framework in which to build a flexible diagnosis
program.

These features offered the possibility of exploring the thought processes used by the computer in reach-
ing conclusions. Consequently, such a reasoning program could justify to users the rationale for its con-
clusions. Symbolic representations, as opposed to numerical or statistical representations, lend themselves
more readily to English translation, helping remove the language barrier between medical professional and
computer.

The most important of the diagnostic programs to use these developments was MYCIN, written by
Shortliffe [Shortliffe 1976] in 1974. His program was a rule based program for diagnosing infectious dis-
eases and prescribing anti-microbial therapy. The knowledge base consisted of rules in the form of premise-
conclusion or if-then pairs. An inference engine or reasoning program would operate on these rules, asking
question concerning the patient’s symptoms of the physician, combining these facts with information in the
knowledge base, and producing a diagnosis and therapy recommendation. The rules served the purpose of
relating symptoms and infectious diseases in a causal relationship. In addition, the rules were of a probabilis-
tic nature, and so inferences made by the program were seldom of an “all or nothing” flavor. This program
was designed for use by clincians who are unreliable selectors of anti-microbial therapy. [Shortliffe 1976]

The gait diagnosis program was based on the philosophy and methodology of the MYCIN program.

Description of the Gait Diagnosis Program
A gait diagnosis program was envisioned that would: contain the multitude of facts in the knowledge base
pertaining to gait deviations; relate the facts in away that parallels a physical therapist’smethod of reasoning;
diagnose the muscle weaknesses or tightnesses for any particular gait deviation using the knowledge base
and information supplied by the user; converse with the user in natural language, English (as opposed to
an artificial or computer language); and describe to the user the line of reasoning which lead to a particular
diagnosis.

A demonstration of a simple dialogue between the computer and a physical therapist is illustrated in
the Chart (at the end of this paper).

Formulation of the Knowledge Base
The process of writing the gait diagnosis program began with the creation of a knowledge base consist-
ing of 345 facts relating to orthopedic gait disorders. This knowledge base was derived from relevant
literature [Blount 1956] [Chapman 1968] [Inman 1968] [Inman 1966] [Klopsteg 1968] [Murray 1964]
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[Murray 1967] [Perry 1967] [Saunders 1953] [Smidt 1974] [Berkeley 1947] [Kent 1976], clinical observa-
tion, and consultation with an expert in gait diagnosis, Prof. B. Kent, personal communication, Novem-
ber 1975. The facts in the knowledge base were arranged in premise-conclusion pairs called rules. There are
three basic types of rules: 1) Descriptions of deviations; 2) Muscle weakness/tightness; and 3) Negatives.

Description of deviation rules are definitional in nature: technical terms such as footslap are described by
a set of positional and dynamic descriptors associated with each involved joint where relevant (e.g. cannot
decelerate plantar flexion defines footslap). These descriptors include symptoms above and below the joint at
which the deviation occurs, the side(s) of the body affected, and the phase(s) at which the deviation occurs.
The deviation is named in the conclusion. For example:

Premise: If patient cannot decelerate plantar flexion
on side A
And this occurs at heelstrike of A

Conclude: Footslap on side A

The intent of this rule is that whenever the inability to decelerate plantar flexion during heelstrike on
side A is seen, the program can conclude that the patient is manifesting the deviation known as footslap on
that side. By means of this rule, the program is informed of the definition of footslap.

Muscle weakness/tightness rules relate deviations such as footslapwith themuscle weaknesses and tight-
nesses which can be a cause of those deviations. These rules include in the premise the named deviation or
a description of it; the conclusion states the muscle weakness(es) and/or tightness(es) responsible for the
deviation along with a numerical certainty factor for each listing. The certainty factor is assigned according
to the likelihood that the particular weakness/tightness caused the deviation:

Premise: If patient exhibits footslap on side A
Conclude: Dorsiflexor weakness side A .80

plantar flexor tightness side A .4

Notice that this rule is of the form “<deviations> imply <weakness/tightness>” rather than the other
way around. These rules could have been entered into the knowledge base in the inverse format (i.e. <weak-
ness/tightness> implies <deviations>) since it is possible to mechanically transform each form of rule to
the other form.

In this example .80 is strongly suggestive evidence that dorsiflexor weakness is responsible for footslap;
.45 is mildly suggestive evidence that plantar flexor tightness is responsible. The computation of the cer-
tainty factor will be explained more fully in a following section.

Negative rules are primarily used to inform the program that certain conditions are essentially mutually
exclusive or to express the necessity of some deviations for particular weaknesses/tightnesses (i.e. <weak-
ness/tightness> always implies <deviations>). Negative rules are of two forms: 1. If x, then not y; and 2. If
not x, then not y. The negative rules in the knowledge base are mostly type 1 rules:

Premise: If muscle A is tight
Conclude: Muscle A is not absent 1.0
Example of type 2 rule:

Premise: If patient does not have difficulty decelerating
plantar flexion at heelstrike

Conclude: Dorsiflexors are not weak .95
This rules says that dorsiflexor weakness is almost always accompanied by difficulty in decelerating

plantar flexion. Thus the absence of this deviation will weigh heavily against weak dorsiflexors, despite a
large amount of evidence in its favor.
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The negative rules, although not completely valid, were successful in limiting the computer’s options
without affecting its diagnostic abilities greatly. For instance, there are negatives rules which assert that
weakness and tightness of a particular muscle are mutually exclusive, even though this situation is possible;
these rules tend to prevent diagnoses which mention both weakness and tightness of a muscle when only
one had strongly suggestive evidence. Without such rules, small positive evidence for weaknesses/tight-
nesses could build up to fairly large support, even in the presence of strong negative evidence (absence of
an essential deviation) or contradictory indications (convincing evidence of a contrary diagnosis). Another
alternative, formulation of a more extensive knowledge base, was not possible within the time frame of the
project.

These rules are called negative rules because a conclusion such as “dorsiflexors are not weak .95” is
expressed as “dorsiflexors are weak -.95” within the program. These negative values count towards the
measure of disbelief to be discussed below.

An important point to note is that, as shall be seen in detail later, that it is possible for rules to not be
completely valid. This results from the use of certainty factors in the rule conclusions. The certainty factors
of all relevant rules are combined in the final verdict, and a single certainty factor may not outweigh a bulk
of evidence to its contrary. Negative rules point out that the use of these rules is not logical in the strict
sense, but heuristic. That is, they are used as rules-of-thumb (via certainty factors) in sorting out the most
likely diagnoses.

Problems encountered in formulating the knowledge base revolved around differences of opinion in
the literature and between the authors regarding orthopedic gait factors. The problems were resolved by 1)
including only information verified in the literature and agreed upon by the investigators; 2) adjusting/av-
eraging numerical certainty factors; and 3) using adjective modifiers when there was too much controversy
in determining the numerical certainty factor, such as using excessive internal rotation instead of listing
exact number of degrees. This had the effect of allowing the user to judge for himself whether a condition
was abnormal or significant, rather than strictly defining those terms in the controversial cases.

After the knowledge base was formulated it had to be translated into a language understandable to
the computer. At this point a close working relationship between the physical therapists and a computer
scientist specializing in AI was necessary. This specialist made the decision to use MacLisp (a dialect of the
LISP symbolic processing language) for the implementation of the diagnosis program. LISP is especially
well suited for the type of symbolic processing used by AI diagnosis programs, and the particular dialect,
MacLisp, is widely available.

After the translation of the knowledge base, the AI expert began to superimpose the knowledge base
onto the reasoning structures provided by MYCIN. However, many difficulties were encountered in using
MYCIN as a model for gait diagnosis. Although amenable to a diagnostic program in infectious disease,
MYCIN lacked three important structures necessary in the analysis of gait: First, there were no provisions
for time sequencing of symptoms which would be an important feature in dealing with the phases of gait.
Secondly, it was difficult for MYCIN to direct the program to consider a deviation in an organized anatom-
ical manner from the trunk and then sequentially to the pelvis, hip, knee, and ankle. Finally, no convenient
structures were available for considering both sides of the body simultaneously, such as weak hip flexors on
the right may implying lateral trunk bending towards the left. Due to these problems, it was necessary for
the AI specialist to write a new program with the necessary features.

Language Structure
The program converses with the user in a limited subset of English, since it was designed for health care
persons who had no specialized knowledge of computers. The problems associated with the language input
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(specifying deviations in sentences rather than codified form) were extensive. In fact, research in natural
language understanding by computers is an area in which a great deal of effort has been spent with only
limited success by scientists in artificial intelligence. The natural language understanding abilities of the gait
diagnosis program is quite rudimentary but is of sufficient power to allow therapists to conduct a diagnosis
without any specialized knowledge about an artificial computer language.

One language problem which appeared was the difficulty the machine had in understanding various
descriptions of the same deviation, e.g. excessive knee flexion at midstance, 40 degrees flexion at midstance,
and knee flexed more than 30 degrees at midstance. This problem was somewhat resolved by the creation
of a parser, a subsystem created by the AI expert and incorporated into the gait diagnosis program, which
transformed all synonymous sentences into a canonical internal or machine format, which was used by the
program to determine the deviations described.

Method of Operation
The program begins by asking the user for the description of a gait deviation. After the deviation is given,
the computer checks to see 1) if it knows the particular deviation being specified; 2) if the phase has been
specified; and 3) if the side i.e. right or left is known (either specified explicitly or implicitly). If these three
criteria are met the program may be instructed to proceed with the diagnosis. If one or more criteria are
missing the program directs the user to supply the necessary information.

If the deviation is not found in the knowledge base the program states: “Could not figure out the devi-
ation” and provides the user with a list of joints. The user then chooses the joint where the the deviation
occurs. For example:

Computer: Deviation:

Therapist: Patient walks with a limp.

Computer: Could not figure out the deviation...
1 Trunk
2 Pelvis
3 Hip
4 Knee
5 Ankle
Select a joint or type "ok":

Therapist: 3

The program then displays a listing of the possible deviations occurring at the specified joint.
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Computer: Hip

1 Circumduction
2 Difficulty decelerating the limb
3 Excessive external rotation
4 Excessive internal rotation
5 The hip extended less than 10 degrees
6 Excessive hip flexion
7 Hip hiking
8 The hip and knee are flexed more than normal
9 The leg follows a laterally curved path
10 The patient takes a quick step
11 The patient takes a short step

Please specify the desired deviations by typing
their numbers
Terminate the list with "ok":

Therapist: 10 ok

The therapist has thus described the deviation, quick step, in a manner understandable to the program.
Since one description of a deviation may be recognized more easily than another, some synonymous

descriptions are included in the listing. For example, circumduction and the leg follows a laterally curved
path are synonymous.

Phase specification is handled somewhat differently. Most deviations are associated with a particular
phase of gait; therefore in the majority of cases the machine can conclude the phase once the deviation is
known. However, some deviations, such as excessive knee flexion, occur during different phases of gait
depending on the muscle weakness/tightness involved. The program deals with this type of deviation by
listing the possible phases during which the deviation may occur and the user then types the appropriate
phase. For example:

Computer: Deviation:

Therapist: Excessive knee flexion on the left side.

Computer: Improper or missing phase specification...
1 mid-swing
2 stance
Select the desired phase by typing the
corresponding number:

Therapist: 2

Computer: Determined deviation:
The knee is flexed more than 20 degrees
Determined phase: stance

When the side is not specified, the request “Please specify (SIDE)” is given. At this point the user can
type “right,” “left,” “left and right,” or “both.”
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Notice in the above example, the program paraphrases its understanding of the deviation so that the
user can re-phrase his specification. A response of “No” will cause the program to accept an alternative
deviation.

In summary, before a procedure for diagnosis begins, the program must: 1) identify the deviation in
the knowledge base, 2) obtain a proper phase specification, and 3) specify the side of the deviation.

Process of Diagnosis
After the deviations are determined the user choses the method he wishes to use in diagnosing the problem.
The methods include: infer, diagnose, and menu (diagnose).

Infer
If the person selects “infer,” the machine assumes that no more information is needed to make the correct
diagnosis and the program proceeds without asking any questions. For example:

Computer: Deviation:

Therapist: The patient's left foot slaps.

Computer: Determined deviation: Foot slap
Determined phase: heelstrike

Deviation:

Therapist: ok [means no more deviations to add]

Computer: Infer, diagnose, or menu (diagnose)?

Therapist: infer

Computer: Inferring ...
Left
The dorsiflexors are weak .85
The plantar flexors are tight .45

Diagnose
If “diagnose” is chosen, themachine assumes additional informationmay be needed; that is, other deviations
may need to be supplied. The user is asked a series of questions about gait deviations requiring a yes or no
response. “Diagnose” questions progress from the trunk down to the ankle; therefore questioning begins
by trying to determine muscle weakness/tightness responsible for trunk deviations first. For example, the
following is the beginning of a Diagnose session with no initial deviations (the program lists the rules it is
using as they are used; this way the therapist can check the line of reasoning later):
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Computer: Infer, diagnose, or menu (diagnose)? diagnose

Therapist: diagnose

Computer: Considering: The back extensors

Is the center of gravity anterior to the knee on
the right during end of swing through midstance?

Therapist: yes

Computer: Invoking RULE214 [the computer lists the rules invoked]
Invoking RULE242
Invoking RULE10
Invoking RULE318

Is the upper trunk hyperextended during heelstrike
through midstance on the right side?

Therapist: no

Computer: Invoking RULE326
Invoking RULE324
Invoking RULE322

Does the pelvis tilt anteriorly less than 3 degrees during
heelstrike through midstance on the right side?

Menu (Diagnose)
If “menu (diagnose)” is selected the machine also assumes that there is more information to be gathered.
Unlike “diagnose,” however, the person can direct the program to find out information regarding a specific
muscle weakness/tightness. After a person chooses “menu (diagnose)” a listing appears from which s/he
selects the muscle group(s) s/he wishes to consider. For example:
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Computer: Infer, diagnose, or menu (diagnose)?

Therapist: menu

Computer:
1 The back extensors
2 The abdominals
3 The hip flexors
4 The hip extensors
5 The hip external rotators
6 The hip internal rotators
7 The hip abductors
8 The gluteus maximus
9 The quadriceps
10 The hamstrings
11 The knee flexors
12 The posterior tibialis muscle
13 The anterior tibialis muscle
14 The peroneals
15 The plantar flexors
16 The dorsiflexors
Select the desired muscles by typing the
corresponding numbers/
Terminate the list with "ok":

Menu (diagnose) allows the user to consider any number of muscles and to specify the order in which
they will be considered.

Method of Reasoning

Backward Reasoning Chain
Theprogram reasons by relating the facts in the knowledge base; it uses a backward reasoning chain in which
the conclusion is proven by validating the premise. The reasoning chain is in the form: D→C, C→B, B→A.

In order to prove A, the program will try to validate B. B will be validated by proving C. C will be
validated by proving D. Thus, given the rule:

Premise: If patient exhibits trendelenberg gait on side A
during swing

Conclude: Hip abductors weak .95

The system will attempt to prove the hip abductors are weak by verifying that the patient has trendelen-
berg gait. It will verify that the premise (trendelenberg gait) is true if any of the following conditions exist:
1) if the user has typed in that the patient has trendelenberg gait; 2) if the user responds “yes” when asked
by the machine if the patient has a trendelenberg gait; 3) if the machine can prove trendelenberg gait by
applying relevant rules from the knowledge base. The machine performs 3 in the following manner: Since
the machine has the rule B→A:
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B Premise: If patient exhibits trendelenberg gait on side A
↓ during swing
A Conclude: Hip abductors weak .95

it searches for rule(s) with B in the conclusion, C→B:

Premise: If C
Conclude: Trendelenberg gait.

Example:

C Premise: If pelvis drops more than 8 degrees
↓ on side A during swing
B Conclude: Trendelenberg gait on side A

The machine will try to verify C (pelvic drop more than 8 degrees) by looking for rules with C in the
conclusion, D→C:

Premise: If D
Conclude: Pelvic drop more than 8 degrees on side A

Example:

D Premise: If abnormal pelvic drop on side A during swing
↓
C Conclude: Pelvic drop more than 8 degrees on side A

If D can be validated C is verified. Having proven that trendelenberg gait is true the machine can now
verify A i.e. hip abductors are weak.

In short, reasoning proceeds by starting at a goal and trying to achieve it by either knowing it to be
true or by finding a rule which establishes this goal in its conclusion. If the premise of that goal can be
established then the desired goal is achieved. The process thus sets up the premise of the rule as a subgoal,
and the reasoning continues in an the same manner until it finds a premise which is known to be true. At
this point all intermediate subgoals, as well as the desired goal are satisfied.

In the gait diagnosis program, an attempt is made to show that every muscle under consideration is
weak and/or tight. This constitutes the original goal of the program.

Certainty Factors
The reasoning process adds items to a data base as they are established. The data base represents the knowl-
edge that the program has about the patient under consideration at any given time; an item represents one
fact about that patient, so the data base is simply a collection of facts. Every item is either a deviation, part
of a description of a deviation, or a muscle weakness/tightness.

Items which have been considered in the reasoning process have belief values or certainty factors as-
sociated with them; these certainty factors reflect the confidence that the program has in the truth of the
associated item, ranging from absolute certainty to absolute disbelief. As the program proceeds through
the backward reasoning chain, it bases its decision regarding the truth of an item on the numerical value of
the certainty factor, as designed by Shortliffe [Shortliffe 1976], rather than on a rigid all or nothing scale.

Items in the data base and rules have certainty factors associated with them; rules, as they are invoked,
effect the certainty factors of items in the data base. The certainty factors of items and rules are represented
differently within the program.
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The certainty factor of an item is a number from +l.0 to -l.0 and is defined as themeasure of belief plus
the measure of disbelief (generated from negative rules) of that item. The measures of belief and disbelief
of an item are stored separately for each item. Rules have certainty factors which have been assigned by the
researchers and which consist of single positive or negative number with values between 0.0 and 1.0 or 0.0
and -1.0. respectively. Also, each rule, when it is invoked, has a certainty factor; this computed certainty
factor either modifies the measure of belief or the measure of disbelief of an item, depending on whether
this certainty factor is a positive or a negative number. Thus the certainty factor of a rule effects the certainty
factors of the items in its conclusion by modifying their measures of belief and disbelief. And the measures
of belief and disbelief of an an item are added together to form its certainty factor.

The closer the certainty factor is to 1.0, the more belief the program has in an item, and the closer it is
to -1.0, the more the program is certain that the item is false.

The certainty factor is determined in two ways: first, it may be assigned during the acquisition of the
initial deviations—every deviation has a certainty factor of 1.0 associated with it when it is entered into the
data base; second, it may be calculated by the program during the backward chaining process. Thus, given
the rule:

Premise: If Trendelenberg on side A during swing
Conclude: Hip abductors weak side B .95

the systemwill determine the certainty factor for the conclusion by computing the certainty factor of “Tren-
delenberg on side A during swing.” and using this rule to determine the certainty factor of “hip abductors
weak side B” as specified by this rule (theremay be other factors whichwill modify the final certainty factor).

If the final certainty factor of trendelenberg gait is less than .20, themachine does not believe the premise;
therefore the premise is not validated, the conclusion is not proven, and the rule is not applied. If the de-
termined certainty factor for the premise is .20 or more, the premise is validated, the conclusion proven,
and the rule applied. The value .20 has been empirically established by Shortliffe [Barnett 1968]. The cer-
tainty factor for the entire rule is determined by multiplying together the certainty factors in the premise
and conclusion:

Premise: If trendelenberg gait on side A
during swing .90

Conclude: Hip abductors weak .95

(.90)× (.95) = .855 certainty factor for the entire rule.

Computation of Certainty Factors
Once the certainty factor of a conclusion has been determined, the certainty factor for that item in the data
base must be computed. As items are added to the data base, the system’s belief in that item is modified by
other rules effecting it. If several rules mention a particular item in their conclusions, then the certainty
factors generated by those rules interact to define the final certainty factor for the item.

Computation of the final certainty factors is done in the followingmanner: given three certainty factors
.60, .50, .40, themachine computes their value between 0.0 and 1.0. Thus, .60 is 60% of the distance between
0.0 and 1.0; .50 is 50% of the distance between .60 and 1.0, or .20, and is added to .60 (.60 + .20 = .80); .40
is 40% of the distance between .80 and 1.0, or .08, and is added to .80 (.80 + .08 = .88). Positive certainty
factors modify the measure of belief in the item; negative certainty factors modify the measure of disbelief.
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System Validation
System validation or debugging was the final step in program design and consisted of running the program
to see how itmade use of the facts in the knowledge base, making adjustments and corrections necessary for
smooth operation and correct analysis of data. Since the program is completely driven by the rules in the
knowledge base and since it reasonsby relating those rules in a logicalmanner, the program’s ability to reason
correctly is only as good as the rules supplied to it by the physical therapists. Debugging allowed the physical
therapists to follow the thought processes used by the computer in relating the rules and drawing conclusions.
Weaknesses in the computer’s reasoning and conclusions reflected weaknesses in the knowledge base and
pointed out inconsistencies in the physical therapists’ reasoning. Ultimately, debugging provided a lesson
in the process of logical reasoning.

The system validation procedure was carried out by running each deviation in isolation through the
computer in order to see what conclusions were reached; and how they were reached. This was done by
examining the rules used in reaching the conclusion in the order in which they were applied: the program
could print out its entire reasoning chain or only the parts of it relevant to a single conclusion. When
the authors were satisfied with the results and the reasoning performed by the program, the deviation was
considered debugged. After each deviation had been debugged separately, random groupings of three or
more deviations together were run through the same procedure to insure consistency of results.

The AI specialist played an integral part in the debugging procedure and provided the technical knowl-
edge necessary for tracing the rules, modifying them in their machine format, and for locating bugs or
problems with the reasoning program itself (as opposed to the rules).

Incorrect or contradictory conclusions were due primarily to inaccurate certainty factors, insufficient
negative rules, and a limited knowledge base. The subsequent readjustment of certainty factors was a
fairly trivial process accomplished by reviewing the relevant rules and empirically making the appropri-
ate changes. The need for a more sophisticated layer of negative rules was a more difficult problem to solve
and in fact is one of the program’s greatest weaknesses. The issue was resolved, at least in the short run, by
addition of more type 2 negative rules.

Discussion
The cost of computer time involved in the development of this diagnostic program was estimated at $5000.
This figure does not include AI staff time which has been estimated at 200 man-hours. Cost has been a
significant factor in limiting the widespread use of computers. However, since computers are becoming
more cost-effective, the feasibility of implementing such a program increases [Pauker 1976]. If the cost of
computers continues to decrease it is foreseen that this prototype could serve several different purposes as
outlined below.

The program has the potential to be used for instruction in gait analysis in academic settings. The pro-
gram’s problem-solving format could serve as a valuable tool in helping the student to integrate information
acquired in classroom instruction. The individualized nature of computer instruction permits the student
to progress at his own rate and allows him a choice of learningmethods i.e. infer, diagnose, menu (diagnose).
By increasing individualized independent study, use of such a program could decrease faculty teaching time.
This would allow a more effective allocation of personnel in other teaching, clinical, or research capacities.

The program also has the potential to assist the clinician in a physical therapy setting. The system
provides a ready storehouse for the multitude of facts associated with orthopedic gait with the ability to
dispense these facts to the user as well as to accept and integrate new facts into the system. As this prototype
increases in complexity by integrating additional information, its validity will increase and it will become a
more viable clinical tool.
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The program design and implementation process suggests the expansion of interdisciplinary coopera-
tion as a valuablemeans for introducing innovative changes into the profession. Drawing upon the expertise
of other disciplines such as computer science could provide impetus for physical therapists to explore areas
beyond the scope of traditional physical therapy.

Areas for Future Research
Utilization of the program would be enhanced by the development of several components.

An English language interface would allow the user to easily review the rules invoked during the rea-
soning process and to make programmodifications. At the present time knowledge of MacLisp is required
for these tasks. This natural language interface would make it possible to perform these procedures using
English thus increasing the the program’s accessibility and manipulation by health care personnel.

Videotaping a patient and having the program know all of his deviations would be a valuable validation
procedure for Diagnosis and Menu (Diagnosis). Program correction of wrong answers given by the user
would be helpful in making the program a more effective teaching tool and could be specified at two points
during the program’s operation: 1) during the diagnostic process, thus allowing immediate and ongoing
correction of errors made by the user in his dialogue with the computer; or 2) at the end of the diagnostic
process, thus allowing the user a final check of his answer.

Inclusion of additional layers of rules would increase the program’s validity, sophistication, and useful-
ness. These are envisioned as being primarily of three types: 1) facts about normal gait; 2) more extensive
negative rules to further refine the program’s reasoning process, thus increasing its reliability; 3) justifi-
cations in English for the conclusions reached during the diagnostic process which would increase the
program’s communication potential with health care professionals.

The addition of gait disorders of different etiology would widen the program’s applicability. Now that
this prototype has been developed for orthopedic problems, it is hoped that the format can be followed to
add other areas of gait disorders e.g. gait disorders resulting from a neurological etiology.
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Chart

Therapist: The patient leans his trunk laterally.

Computer: Determined deviation: Lateral trunk bending
Determined phase: midstance
Please specify:
(SIDE)

Therapist: left.

Computer: Determined deviation: Lateral trunk bending
Determined phase: midstance
Deviation: (Type any new deviations or terminate

list with "ok")

Therapist: ok

Computer: Infer, diagnose, or menu (diagnose)? *

Therapist: Infer.

Computer: Inferring ... [program is formulating a diagnosis]
Left
The hip abductors are absent (strongly suggestive)
The hip abductors are extremely weak (strongly suggestive)

Right
The hip flexors are weak (suggestive)
The knee flexors are weak (weakly suggestive)

* Infer, diagnose,and menu diagnose are three different methods of arriving at a diagnosis. The user
chooses one of the three. These are explained in the report.
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