

Richard P. Gabriel

Distinguished Engineer, Sun Microsystems, Inc

Objects Have Failed
1 of 83
Objects Have Failed

The Essence of the Argument

OO focuses on perfecting each object instead of looking outward to the interaction
of objects, creating whole, reliable, and flexible systems, and working with people
trying to accomplish something in the real world.

–Ron Goldman
2 of 83
Objects Have Failed

The Essence of the Argument

The most grievous fault of OO has been the inwards focus it has engendered—a
focus on making each object perfect, efficient, mathematically provable, etc. As
opposed to looking outwards to the human world. So the basic “object’s attitude”
tries to encapsulate & isolate every problem into the static world, sucking all the
messy, human, living juice out of it. –Ron Goldman
3 of 83
Objects Have Failed

The Essence of the Argument

Good systems cannot be built by design experts who proceed with only limited
input from users. Even when designers and prospective users have unlimited time
for conversation, there are many aspects of a work process—such as how a
particular tool is held, or what it is for something to “look right”—that reside in
the complex, often tacit, domain of context. –Kuhn & Winograd
4 of 83
Objects Have Failed

The Essence of the Argument

A first principle of construction: on no account allow the engineering to dictate the
building’s form never modify the social spaces to conform to the engineering
structure of the building. –Christopher Alexander
5 of 83
Objects Have Failed

The Essence of the Argument
6 of 83
Objects Have Failed

Failure to Embrace Failure

L. Peter Deutsch: Seven Fallacies of Distributed Computing”

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn’t change

• There is one administrator

• Transport cost is zero
7 of 83
Objects Have Failed

Failure to Embrace Failure

These fallacies also can apply to monolithic, single-computer systems:

• The computer is reliable—within a single program, calling a procedure or invok-
ing a method may not work because the interface wasn’t understood by the devel-
opers, the procedure or method is incorrect, data is semantically bad, dynamic
loading, bugs, etc.

• Latency is zero—a procedure might not return due to failure. In multithreaded
programs, a thread may die or take a long time, etc.

• Bandwidth is infinite—long data copy times, infinite loops based on bad data

• The computer is secure—if some library is written by someone else...

• Topology doesn’t change—data-driven programming, dynamic method dis-
patch...

• There is one administrator—code can be written by lots of different people and
installed haphazardly or by mistake

• Transport cost is zero—how is a disk different than a network...
8 of 83
Objects Have Failed

Failure to Embrace Failure

• The Seven Fallacies point out that failures can happen anywhere.

• The thrust of much of the last 30 years of computer science has been to try to
make it so that failures can’t happen—by using more and more static notions, by
making programming languages more strict, and by heavyweight methodologies

• We need to embrace failure by writing code that is resilient, that can repair itself
when it notices things are going wrong. To do this well requires practice, but we
are taught that it is bad to practice this in our regular programming.

• Failures are called exceptions, while in the real world failures are called “that’s life.”

• Although one view of objects is that they are autonomous entities with identity
and even a sense of self-preservation, in fact objects have been taken over by static
thinkers who have imposed types and static notions making software brittle in
their attempts to make it robust.
9 of 83
Objects Have Failed

Failure to Embrace Self-Healing

• Self-healing is necessary for the future where applications will be increasingly
distributed on the net

• Pieces of functionality will be damaged or removed, possibly by people making
mistakes while doing sys admin work or by failures during upgrades or the devel-
opment of new or upgraded code.

• In Java it’s not easy to start out in one package and move to another—through
standardization, for example

• Self-healing requires, perhaps, diversity and redundancy, if not a statistical basis
10 of 83
Objects Have Failed

Failure to Fight Off the Static Thinkers

• OO is dynamic—what’s with these static guys taking over?

• “Dijkstra is renowned for the insight that mathematical logic is and must be the
basis for sensible computer program construction”—sometime around 1970–
1980, the pseudo-mathematicians within CS took over. This started with Dijk-
stra and Parnas, who wrote later, in 1986:

Ideally, we would like to derive our programs from a statement of requirements in
the same sense that theorems are derived from axioms in a published proof. All of
the methodologies that can be considered “top down” are the result of our desire to
have a rational systematic way of designing software.

–A Rational Design Process: How and Why to Fake It, IEEE Trans. on Software Engineering, Feb. 1986

This is based on a fundamental error: that the structure of the process for creat-
ing something matches the structure of the thing created. In this case, there is a
mistaken hidden belief that a proof is constructed by starting with the axioms
and moving forward through the steps of the proof. This error can be traced back
to the Greek philosopher Pappus.
11 of 83
Objects Have Failed

Failure to Fight Off the Static Thinkers

• “The strong typing of object-oriented languages encourages narrowly defined
packages that are hard to reuse. Each package requires objects of a specific type; if
two packages are to work together, conversion code must be written to translate
between the types required by the packages.” [John K. Ousterhout]

• What the static types are trying to do is to make sure that a program cannot fail
at runtime. Yet, for living systems to be created, they must be able to sustain a
failure and repair itself. This is part of a doomed attempt to eliminate errors and
write perfect systems. OO people understood this but allowed—though how
could they have stopped it?—the static types to take over their languages, start-
ing with C++, Eiffel, and Java.
12 of 83
Objects Have Failed

Failure to Fight Off the Static Thinkers

The key question is whether typing has reduced the expressiveness of languages. I
guess that my experience says “yes.” This is because type systems are not generally
able to describe the sophisticated abstractions that we want to build. Although these
abstractions may be sophisticated, that does not mean they are impossible to
understand—they are often quite intuitive. But by their very nature, type systems
are required to be able to efficiently and automatically prove assertions about
programs, and this will tend to impose limitations on what kinds of things a type
system can do. We also do not want our types to be larger than our programs, so
this imposes limits on their complexity. One thing that is not recognized enough is
that types are partial specifications, and it might be nice to allow different levels of
detail in your types, without having to resort to “object” (the type with no detail).

The second question is whether the loss in expressiveness is worth the gain in
“safety.” I would say right now that the answer is no, in part because Java and C#
even lack any form of generic types (type parameters). This forces you do cast
everywhere, which defeats the purpose of the type system, or build things like
.NET CollectionGen (http://www.sellsbrothers.com/tools/) to generate
wrappers that do the casts for you.

–William Cook
13 of 83
Objects Have Failed

Failure to Fight Off the Static Thinkers

. . . all marshaling-based type checking is done at run-time.
–Chris Sells, http://www.sellsbrothers.com

As you point out, static typing is tied to the notion of designing up front. It is also
connected with fear. I have to say that I really like types, in general. But I don’t like
them when the prevent me from expressing myself. Or, as is more likely but much
more subtle, when they cause a language designer to distort a language to suit the
needs of the type system.

–William Cook
14 of 83
Objects Have Failed

Failure to Fight Off the Syntax Freaks

The early OO languages—Smalltalk and let’s say the Lisp-based ones—had very
simple syntaxes, but later ones like C++ and Java became very heavy with syntax.

• Where is simple, user-level programming?

• Where is there respect for form and not only structure? One could argue that
making some part of the language unassailable—operators for example—renders
the language too brittle and inflexible in many ways that limit its ability to be
used, and contributes to making the language more suited for structural pro-
gramming rather than expressive programming.
15 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

Reuse is largely a failure. The primary reason is that making things reusable
requires extra work, and there is no real incentive to do it. Moreover, people seem to
think that reuse comes for free with OO languages, but this is a mistake from rea-
soning about implementation inheritance.
16 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

Every manager learns that reuse requires a process of reuse or at least a policy.
First, you need to have a central repository of code. It doesn’t help if developers
have to go around to other developers to locate code you might be able to use. Some
organizations are small enough that the developers can have group meetings to
discuss needs and supplies of code.

Second, there has to be a means of locating the right piece of code, which usually
requires a good classification scheme. It does no good to have the right piece of code
if no one can find it. Classification in the world of books, reports, magazines, and
the like is a profession, called cataloging. Librarians help people find the book. But
few software organizations can afford a software cataloger, let alone a librarian to
help find the software for its developers. This is because when a development
manager has the choice of hiring another developer or a software librarian, the
manager will always hire the developer. . . .
17 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

Third, there must be good documentation of what each piece of code in the
repository does. This includes not only the interface and its purpose but also
enough about the innards of the code—its performance and resource use—to
enable a developer to use it wisely. A developer must know these other things, for
example, in order to meet performance goals. In many cases such documentation is
just the code itself, but this information could be better provided by ordinary
documentation; but again, a development manager would prefer to hire a
developer rather than a documentation person.

For a lot of pieces of code it is just plain simpler to write it yourself than to go
through the process of finding and understanding reusable code. Therefore, what
development managers have discovered is that the process-oriented world of reuse
has too many barriers for effective use.

–Patterns of Software, rpg
18 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

However, the form of reuse in object-oriented languages hardly satisfies the broad
goals of software development. What I want to suggest is a better word than reuse
and maybe a better concept for the reuse-like property of object-oriented languages.

The word (and concept) is compression. Compression is the characteristic of a
piece of text that the meaning of any part of it is “larger” than that piece has by
itself. This is accomplished by the context being rich and each part of the text
drawing on that context—each word draws part of its meaning from its
surroundings. A familiar example outside programming is poetry whose heavily
layered meanings can seem dense because of the multiple images it generates and
the way each new image or phrase draws from several of the others. Poetry uses
compressed language.

–Patterns of Software, rpg
19 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

Reuse is the holy grail of software engineering, one that is so entrenched in our
belief system no one dares to question its virtue. The quest for reusable components
is one of the foundations of object-oriented programming and all of the tools and
languages that OOP has spawned.

Yet, my observations suggest that at least in the embedded space reuse has been a
dismal failure.

–Jack Ganssle, Embedded.com
20 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

Martin Griss and others have observed that a module isn’t really reusable till it’s
been reused three times. No matter how good our intentions, the first time we try to
reuse something we discover a facet of the new problem the old module just can’t
manage. So we tune it. This happens a couple of times till the thing is generally
reusable. That’s not because we’re stupid; it’s simply because domain analysis is
hard. No one is smart enough to understand how a function might get used in
other apps.

It’s expensive to do a forward-looking design of a function or module. You’ll always
save money in the short term solving today’s very specific problem, ignoring the
anticipated demands of future projects. If you elect to pursue a careful program of
reuse your projects will initially come in late and over-budget.

–Jack Ganssle, Embedded.com
21 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

But we’re not doing it. Sure it’s hard. Yes, it’s initially expensive. And of course we
cannot reuse everything; a lot of what we build will always be inherently
unreusable, like hardware drivers that get tossed with each new spin of the design.

Why is reuse such a failure?
–Jack Ganssle, Embedded.com
22 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

Failures were due to not introducing reuse processes, not modifying non-reuse
processes and not considering human factors. The root cause was the lack of
commitment by top management, or nonawareness of the importance of these
factors, often coupled with the belief that using the object-oriented
approach or setting up a repository would automatically lead to success
in reuse.

–Success and Failure Factors in Software Reuse, Maurizio Morisio, Michel Ezran, Colin Tully
23 of 83
Objects Have Failed

Failure to Tell the Truth About Reuse

I think you need to make a stronger argument for OOP=reuse. I think it really is,
but it needs to be clear from the above. And there’s reuse over time (by the same
project team), and reuse of a stable OO subsystem by different teams (e.g. MFC). I
think those are different, and they’ve both failed. The former because OO
hierarchies don’t tend to remain stable—they’re constantly having methods
added, changed, etc . It ’s rarely a case of creating new inter faces for
implementations. And in the latter case (using something like MFC) there’s better
success, but the reality is that unless the OO hierarchy has a lot of users and
mileage behind it, it typically isn’t that usable except for very narrow
domains. Also there’s <William Cook’s> argument about OO systems
accumulating a lot of mechanism that works at runtime rather than compile time.

–Warren Harris
24 of 83
Objects Have Failed

Failure of Encapsulation

Encapsulation is hiding implementation from interface. This enables an implemen-
tor to monkey with the implementation without clients knowing. In OO, objects
provide the ultimate in encapsulation, since either the method signature or the mes-
sage is all that someone using the object can know.

It fails when there are global properties that need to be maintained by a group of
encapsulations, and when the realities of evolution where wholesale changes need to
be made.
25 of 83
Objects Have Failed

Failure of Encapsulation

Encapsulation: the problem is that encapsulation is fantastic in places where it is
needed, but it is terrible when applied in places where it isn’t needed. Since OOP
enforced encapsulation no matter what, you are stuck. For example, there
are many properties of objects that are non-local, for example, any kind of global
consistency. What tends to happen in OOP is that every object has to encode
its view of the global consistency condition, and do its part to help maintain
the right global properties. This can be fun if you really need the encapsulation, to
allow alternative implementations. But if you don’t need it, you end up writing lots
of very tricky code in multiple places that basically does the same thing. Everything
seems encapsulated, but is in fact completely interdependent. This is related to the
notion of aspects.

–William Cook
26 of 83
Objects Have Failed

Failure of Encapsulation

I believe that encapsulation has failed because it is all about program
evolution, and in real life, evolution doesn’t take place in the ways we expect it to.
A very good programmer might write a very good class (with public, protected and
private state and methods spelled out just so) only to find that the requirements
have changed drastically in the next release, and the class need to be further
factored, generalized, parameterized or virtualized to accommodate the new
requirements. Over a number of these cycles, the class may stabilize, but the very
nature of the dynamics of OOP seems to be making these sorts of refactorizations.
Encapsulation fails because it ends up protecting the programmer from
themselves—a lot of extra typing, code movement, etc.—without anything
valuable coming from it. Moreover, even if encapsulation is preserved (as with the
polar/rectangular example), there may be other dimensions of the code that are
not “encapsulated” such as the performance implication on the overall program
(imagine the performance impact on changing your window system to deal with
polar points with all sorts of trig operations nicely encapsulated under the covers). .
. .
27 of 83
Objects Have Failed

Failure of Encapsulation

The truth of the dynamics/evolutionary situation is that you need all the code
in front of you so that you can massage it into the new form you want it to take
(which is why open source succeeds where encapsulation does not). Minimizing
outside dependencies is a good thing, but doing this at the class level is usually just
too fine grained. I think that’s why many people still resort to standard C functions
when making a public interface for their C++ program (or they use IDL or some
other interface formalism to minimize the collection of outward-facing methods).
But when it comes to massaging the internals, encapsulation just gets in the way.

–Warren Harris
28 of 83
Objects Have Failed

Failure to Improve Software Development

• From Lisp and Smalltalk development environments we’ve generally taken a step
backward. GUI development has improved quite a bit, but what goes on under
the covers is still hard. Most developers use just some form of text editor and a
basic compiler-like system.

• Patterns have sprung up as an attempt to capture some design and domain
knowledge, but they are not widely used. Further, frameworks seemed at first to
hold a lot of promise, but in practice they have proven too brittle and awkward to
use. In the original Smalltalk (and Lisp) environment(s), the environment itself
was the basic framework along with a variety of smaller internal ones. Thus the
process of development itself was one of essentially redecorating one’s develop-
ment environment. This is much more dynamic than a build process, which is
what C++ and Java require.

• With Agile Methods, the OO crowd has begun to talk about what development
is really about, but overloading OO languages with static notions has reverted
the mainstream of OO to the debilitating style it has been for many years. There
are no good development environments for C++ and Java, though there are for
Smalltalk and Lisp.
29 of 83
Objects Have Failed

Failure to Tell the Truth About Design

• It’s not just characters talking to each other, there are things like law of physics,
etc

• Model-driven programming is a little like the use of macros in Common Lisp in
which the form of the language is adapted to the domain rather than having to
dream up configurations of objects and patterns of communications. To Lisp/
Scheme people, the GoF book is a joke because the patterns there are simply cov-
ering for lack of programming and abstractional power.

I want to bring the programs closer to the design
–William Cook
30 of 83
Objects Have Failed

Failure to Tell the Truth About Design

Peter Norvig took a look at

Design Patterns in Dylan or Lisp

• 16 of 23 patterns are either invisible or simpler, due to:

• First-class types (6): Abstract-Factory, Flyweight, Factory-Method, State, Proxy,
Chain-Of-Responsibility

• First-class functions (4): Command, Strategy, Template-Method, Visitor

• Macros (2): Interpreter, Iterator

• Method Combination (2): Mediator, Observer

• Multimethods (1): Builder

• Modules (1): Facade

One can argue that the popularity of design patterns means that programmers need
to write code where in other languages they could abstract over more things, use
first-class types, etc.
31 of 83
Objects Have Failed

Failure to Tell the Truth About Design

Agile methods are finally trying to tell the truth about design: That when designing
a new thing, you need to be building it too. Here is why:

Agile methods seem to all be solving a pair of simultaneous problems: creating in
an artistic mode while at the same time doing careful engineering. Developing
software systems is a creative activity requiring the techniques of science,
engineering, and art; and software, unlike art, is also required to perform via
execution on (networked) computer hardware.
32 of 83
Objects Have Failed

Babbage on Design

It can never be too strongly impressed upon the minds of those who are devising
new machines, that to make the most perfect drawings of every part tends
essentially both to the success of the trial, and to economy in arriving at the result.

–On Contriving Machinery, Charles Babbage

However, for more complex machinery where performance will depend heavily
upon “physical or chemical properties” (p. 261), optimum design cannot be deter-
mined on paper alone, and testing and experimentation (“direct trial”) will be
unavoidable.
33 of 83
Objects Have Failed

Babbage on Design

Babbage worked during the heyday of the Industrial Revolution, and many of his
ideas were informed by the transition from the medieval engineering worldview to
the worldview of the modern factory. Babbage considered himself in the line of early
economists like Adam Smith. For the medieval engineer, the purpose of engineering
was to bring about God’s perfect order on earth, and thereby replace the chaos of
the physical and social world with something akin to the crystalline rationality of
heaven. In this view, a designer has perfect knowledge of the task that the machine
will perform and the environment in which the machine will operate. The designer
of a machine has the power to implement the design and to secure the cooperation
of all of the parties who will interact with it. And a factory is a self-sufficient world,
wholly apart from the rest of the world except for the flows of material inputs and
outputs, which can be characterized simply and completely.
34 of 83
Objects Have Failed

Failure to Tell the Truth About Design

Participatory Design:

Good systems cannot be built by design experts who proceed with only limited
input from users. Even when designers and prospective users have unlimited time
for conversation, there are many aspects of a work process—such as how a
particular tool is held, or what it is for something to “look right”—that reside in
the complex, often tacit, domain of context. The UTOPIA researchers needed to
invent new methods for achieving mutual understanding, so that they could more
fully understand the work world of graphics workers.

Requirement specifications and systems descriptions based on information from
interviews were not very successful. Improvements came when we made joint visits
to interesting plants, trade shows, and vendors and had discussions with other
users; when we dedicated considerably more time to learning from each other,
designers from graphics workers and graphics workers from designers; when we
started to use design-by-doing methods and descriptions such as mockups and work
organization games; and when we started to understand and use traditional tools
as a design ideal for computer-based tools. (Ehn, 1992, p. 117)

–Sara Kuhn & Terry Winograd
35 of 83
Objects Have Failed

Failure to Tell the Truth About Design

• The need for designers to take work practice seriously—to see the current ways
that work is done as an evolved solution to a complex work situation that the
designer only partially understands

• The fact that we are dealing with human actors, rather than cut-and-dried
human factors—systems need to deal with users’ concerns, treating them as
people, rather than as performers of functions in a defined work role.

• The idea that work tasks must be seen within their context and are therefore
situated actions, whose meaning and effectiveness cannot be evaluated in
isolation from the context

• The recognition that work is fundamentally social, involving extensive
cooperation and communication

–Sara Kuhn & Terry Winograd
36 of 83
Objects Have Failed

Failure to Limit the Grand Narrative

Apparently we are trained to expect a software crisis, and to ascribe to software
failures all the ills of society: the collapse of the dot-com bubble, the bankruptcy of
Enron, and the millennial end of the world.

This corrosive scepticism about the achievements of programming is unfounded.
Few doom-laden prophesies have come to pass: the world did not end with
fireworks over the Sydney harbour bridge, and few modern disasters are due to
software. To consider just two examples: the space shuttle crash was not caused by
software—indeed, Feynman praises the shuttle software practices as exemplary
engineering; and the Dot-Com Boom (like the South Sea Bubble) was not caused
by failure of technology, but the over-enthusiasm of global stock markets.

–Notes on Postmodern Programming, James Noble & Robert Biddle
37 of 83
Objects Have Failed

Failure to Limit the Grand Narrative

In fact, the failure of the dot-com bubble was the fact that a bubble was created by
the grand narratives of the OO world. When some of the promises of that grand
narrative appeared on the Web in the form of home-grown (aka, postmodern) activ-
ities and some stores that seemed to make the experience of purchasing devoid of
the expense of traveling to a store and walking around. If the energy required to
shop could be eliminated, the narrative asserted, then shopping would become
uncontrolled with uncontrolled profits. The beauty of some parts of the computer
experience were confused with what could be done, and the technologists, faced
with the possibility of unfathomable riches and with the belief that their god-like
powers could rise to the occasion, decided the truth was not worth cracking open.
That is, the grand narrative was left to stand and the global stock markets
responded to it.

The truth of the software associated with the Web is indeed a success story, just as
the stories of countless men and women who live in moderate comfort without
grand ambitions nor with even noticeable achievements are success stories—simply
because they play out without devastation and ambition.
38 of 83
Objects Have Failed

.com Collapse

• eCommerce requires adaptable software to handle changing business conditions
and models

• From January 2000–May 2001:
� 374 companies were delisted from NASDAQ
� on average $5–$10m was spent on computer infrastructure
� of that, $1–$5m was spent on software development
� in many cases, the software was not suitable and not adaptable enough for real business

situations
39 of 83
Objects Have Failed

.com Collapse

ZoZa.com is typical: the first proprietary apparel brand launched online selling
high-fashion sportswear—hop off your mountain bike, pop into the Porsche, and
off to the Pops.

• ATG Dynamo running on Solaris—eBusiness platform

• Oracle 8i

• Verity search tools

• A lot of custom, stand-alone Java glued everything together

• The bulk of the ATG work was outsourced to Xuma—an application infrastruc-
ture provider

• The production site:
� 2 Sun Netras doing web services via Apache/Stronghold (web server/secure web server)
� 4 Sun Netras providing an application layer and running Dynamo
� 1 Verity server
� 1 Sun Netra providing gateway services to fulfillment partners
� 1 Sun Enterprise 250 running Oracle as a production database
� Staging: 2 web boxes, 2 logic boxes, 1 Oracle box, 1 Verity box
� Development: one big Sun Ultra 2
40 of 83
Objects Have Failed

.com Collapse

The CTO of ZoZa says:

We built a good e-commerce platform, but unfortunately sales were slowly building
just as the dot com economy collapsed. We had built a company to handle the
promised phenomenal sales based on the Ziegler’s self-promoted public profile.
That never happened. The costs of building our sales and fulfillment
capabilities, combined with ZoZa’s lack of credit in the apparel manufacturing
world caused us to go through SoftBank’s $17 million quite quickly.

Sizing was a terrible problem for ZoZa. Not only did the clothing get designed for
ever smaller people, but even then the sizing was highly variable. Sometimes only a
specific color of a product would be whacked out.

We ended up building a separate database table for sizing anomalies.
41 of 83
Objects Have Failed

.com Collapse

[The Zieglers were] disappointed by the Web. Initially, they planned to use
virtual-reality technology so customers could mix-and-match items and feel like
they were trying on clothes. They also wanted to provide a personal assistant to
shoppers who could recommend items based on an individual’s coloring. But the
Zieglers scrapped all that when they found that the technology ruined the
shopping experience because it took too long to download. “The medium is far
more rigid than we imagined,” says Mel [Ziegler].

Patricia [Ziegler], a former newspaper illustrator who designs many of the
clothes, was put off by the poor quality of colors on the Web. And she was really
bummed to learn how complex it was to swap out items that weren’t selling
well. “We have to change 27 to 32 different links to swap out just one style—from
the fabric to sizing to color,” she says.

So the Zieglers have gone back to basics. Although it cost roughly $7 million to
build, their Web site is, well, stark—a picture of Zen minimalism. Navigation
is simple and uncluttered. Nothing exists on the site that can’t be optimally used
with a standard 56k modem. The one concession to flash comes in the form of so-
called mind crackers, which are Zen sayings about life hidden behind little
snowflakes that have been sprinkled throughout the site.
42 of 83
Objects Have Failed

Failure to Give Form a Chance Over Structure

Design patterns in OO exist because the only way to do any sort of abstraction in
OO languages is to define communicating and cooperating objects. In fact, one can-
not even use ordinary functional or procedural abstraction in the usual way in some
languages because everything that is like a procedure or a function must be associ-
ated with a class. This causes the designer to think exclusively in terms of a structure
of objects.
43 of 83
Objects Have Failed

Failure to Give Form a Chance Over Structure

If you give someone Fortran, he has Fortran. If you give someone Lisp, he has any
language he pleases.

–Guy L. Steele Jr

This is the nub of what I want to say. A language design can no longer be a thing.
It must be a pattern—a pattern for growth—a pattern for growing the pattern
for designing the patterns that programmers can use for their real work and their
main goal.

My point is that a good programmer in these times does not just write programs. A
good programmer builds a working vocabulary. In other words, a good
programmer does language design, though not from scratch, but by building on the
frame of a base language.

–Guy L. Steele Jr
44 of 83
Objects Have Failed

Failure to Give Form a Chance Over Structure

Modeling: One of the great things to be driven by OOP is the idea of software
modeling languages, like UML. People have noticed that a lot of the information
in these models is structural, concerning the large-scale structure of information,
presentation, and workflow. Within this structure is a more complex layer of
information about behavior, detailed operational specifications, etc. But just setting
up the structure involves huge amounts of typing in OOP. For example, a typical
enterprise application might have 500 tables and 10,000 attributes. That
translates to something like 200,000 lines of code before you have even done any
real work. A similar thing happens with the user interface. People are working on
round-trip template generation to produce all this code automatically, but it begs
the question of why it needs to be generated at all? While some people dream of
automatically generating full applications from specifications, this is not likely. But
what will happen is that the structural aspects of the specifications will be compiled
automatically, leaving the true complex behaviors to be coded and plugged into this
structure. How will these plug-ins be coded? Probably using a variety of paradigms:
functional, logic-based, and object-oriented.

–William Cook
45 of 83
Objects Have Failed

Failure to be Truthful about Learning

There are 24 books with titles like “Teach yourself <something related to> Java” or
“Learn Java.” 15 of them have phrases like “in 21 days,” “in 24 hours,” or “over the
weekend.” There there the ones that say “In Web time,” “in the least amount of time,”
“the quickest way,” and “now.”
46 of 83
Objects Have Failed

Failure to be Truthful about Learning

From Peter Norvig:

Researchers (Hayes, Bloom) have shown it takes about ten years to develop
expertise in any of a wide variety of areas, including chess playing, music
composition, painting, piano playing, swimming, tennis, and research in
neuropsychology and topology. There appear to be no real shortcuts: even Mozart,
who was a musical prodigy at age 4, took 13 more years before he began to produce
world-class music. In another genre, the Beatles seemed to burst onto the scene,
appearing on the Ed Sullivan show in 1964. But they had been playing since 1957,
and while they had mass appeal early on, their first great critical success, Sgt.
Peppers, was released in 1967. Samuel Johnson thought it took longer than ten
years: “Excellence in any department can be attained only by the labor of a lifetime;
it is not to be purchased at a lesser price.” And Chaucer complained “the lyf so
short, the craft so long to lerne.”
47 of 83
Objects Have Failed

Failure to be Truthful about Learning

From Peter Norvig:

Here’s my recipe for programming success:

• Get interested in programming, and do some because it is fun. Make sure that it
keeps being enough fun so that you will be willing to put in ten years.

• Talk to other programmers; read other programs. This is more important than
any book or training course.

• Program. The best kind of learning is learning by doing. To put it more
technically, “the maximal level of performance for individuals in a given
domain is not attained automatically as a function of extended experience, but
the level of performance can be increased even by highly experienced individuals
as a result of deliberate efforts to improve.” (p. 366) and “the most effective
learning requires a well-defined task with an appropriate difficulty level for the
particular individual, informative feedback, and opportunities for repetition
and corrections of errors.” (p. 20-21) The book Cognition in Practice: Mind,
Mathematics, and Culture in Everyday Life is an interesting reference for this
viewpoint.
48 of 83
Objects Have Failed

Failure to be Truthful about Learning

• If you want, put in four years at a college (or more at a graduate school). This
will give you access to some jobs that require credentials, and it will give you a
deeper understanding of the field, but if you don’t enjoy school, you can (with
some dedication) get similar experience on the job. In any case, book learning
alone won’t be enough. “Computer science education cannot make anybody an
expert programmer any more than studying brushes and pigment can make
somebody an expert painter” says Eric Raymond, author of The New Hacker’s
Dictionary. One of the best programmers I ever hired had only a High School
degree; he’s produced a lot of great software, has his own news group, and
through stock options is no doubt much richer than I’ll ever be.

• Work on projects with other programmers. Be the best programmer on some
projects; be the worst on some others. When you’re the best, you get to test your
abilities to lead a project, and to inspire others with your vision. When you’re
the worst, you learn what the masters do, and you learn what they don’t like to
do (because they make you do it for them).

• Work on projects after other programmers. Be involved in understanding a
program written by someone else. See what it takes to understand and fix it
when the original programmers are not around. Think about how to design
your programs to make it easier for those who will maintain it after you.
49 of 83
Objects Have Failed

Failure to be Truthful about Learning

• Learn at least a half dozen programming languages. Include one language that
supports class abstractions (like Java or C++), one that supports functional
abstraction (like Lisp or ML), one that supports syntactic abstraction (like
Lisp), one that supports declarative specifications (like Prolog or C++
templates), one that supports coroutines (like Icon or Scheme), and one that
supports parallelism (like Sisal).

• Remember that there is a “computer” in “computer science”. Know how long it
takes your computer to execute an instruction, fetch a word from memory (with
and without a cache miss), read consecutive words from disk, and seek to a new
location on disk. (Answers here.)

• Get involved in a language standardization effort. It could be the ANSI C++
committee, or it could be deciding if your local coding style will have 2 or 4 space
indentation levels. Either way, you learn about what other people like in a
language, how deeply they feel so, and perhaps even a little about why they feel
so.

• Have the good sense to get off the language standardization effort as quickly as
possible.
50 of 83
Objects Have Failed

Failure of Admitting Ordinary People to the Guild

OO has meant that the skill level required to program continues to rise, limiting
who can be a programmer. Again this stems from the monolithic viewpoint of
everything being an object. Complexity requires multiple levels of expression, which
OO has neglected.

–Ron Goldman
51 of 83
Objects Have Failed

Failure to Help Teach Software Arts

OO as it is with its focus on the small is incapable of conceiving of “Software as
Literature”—the exclusive focus on the object makes it impossible to see the larger
whole.

–Ron Goldman
52 of 83
Objects Have Failed

Failure to Get Out of the Way

Redefining Computing

While it is perhaps natural and inevitable that languages like Fortran and its
successors should have developed out of the concept of the von Neumann computer
as they did, the fact that such languages have dominated our thinking for twenty
years is unfortunate. It is unfortunate because their long-standing familiarity will
make it hard for us to understand and adopt new programming styles which one
day will offer far greater intellectual and computational power.

—John Backus, 1981

Programming Languages

Millions for compilers but hardly a penny for understanding human programming
language use. Now, programming languages are obviously symmetrical, the
computer on one side, the programmer on the other. In an appropriate science of
computer languages, one would expect that half the effort would be on the
computer side, understanding how to translate the languages into executable form,
and half on the human side, understanding how to design languages that are easy
or productive to use.... The human and computer parts of programming languages
have developed in radical asymmetry.

—Alan Newell & Stu Card, 1985
53 of 83
Objects Have Failed

Failure to Get Out of the Way

Computing Paradigms

...the current paradigm is so thoroughly established that the only way to change is
to start over again.

—Donald Norman, The Invisible Computer
54 of 83
Objects Have Failed

Failure to Get Out of the Way

Deep Trouble

Computer Science is in deep trouble. Structured design is a failure. Systems, as
currently engineered, are brittle and fragile. They cannot be easily adapted to new
situations. Small changes in requirements entail large changes in the structure and
configuration. Small errors in the programs that prescribe the behavior of the
system can lead to large errors in the desired behavior. Indeed, current
computational systems are unreasonably dependent on the correctness of the
implementation, and they cannot be easily modified to account for errors in the
design, errors in the specifications, or the inevitable evolution of the requirements
for which the design was commissioned. (Just imagine what happens if you cut a
random wire in your computer!) This problem is structural. This is not a
complexity problem. It will not be solved by some form of modularity. We need
new ideas. We need a new set of engineering principles that can be applied to
effectively build flexible, robust, evolvable, and efficient systems.

–Gerald Jay Sussman, MIT
55 of 83
Objects Have Failed

Failure to Get Out of the Way

Amorphous Computing Project, MIT

A colony of cells cooperates to form a multicellular organism under the direction of
a genetic program shared by the members of the colony. A swarm of bees
cooperates to construct a hive. Humans group together to build towns, cities, and
nations. These examples raise fundamental questions for the organization of
computing systems:

• How do we obtain coherent behavior from the cooperation of large numbers of
unreliable parts that are interconnected in unknown, irregular, and time-
varying ways?

• What are the methods for instructing myriads of programmable entities to
cooperate to achieve particular goals?

These questions have been recognized as fundamental for generations. Now is an
opportune time to tackle the engineering of emergent order: to identify the
engineering principles and languages that can be used to observe, control, organize,
and exploit the behavior of programmable multitudes.
56 of 83
Objects Have Failed

Failure to Get Out of the Way

Amorphous Computing Project

The objective of this research is to create the system-architectural, algorithmic, and
technological foundations for exploiting programmable materials. These are
materials that incorporate vast numbers of programmable elements that react to
each other and to their environment. Such materials can be fabricated
economically, provided that the computing elements are amassed in bulk without
arranging for precision interconnect and testing. In order to exploit programmable
materials we must identify engineering principles for organizing and instructing
myriad programmable entities to cooperate to achieve pre-established goals, even
though the individual entities are unreliable and interconnected in unknown,
irregular, and time-varying ways.
57 of 83
Objects Have Failed

Failure to Get Out of the Way

Autonomic Computing Project, IBM

Civilization advances by extending the number of important operations which we
can perform without thinking about them.

–Alfred North Whitehead

[How to you make things simpler for administrators and users of IT?] . .
. we need to create more complex systems. How will this possibly help? By
embedding the complexity in the system infrastructure itself—both hardware and
software —then automating its management. For this approach we find
inspiration in the massively complex systems of the human body. Think for a
moment about one such system at work in our bodies, one so seamlessly embedded
we barely notice it: the autonomic nervous system
58 of 83
Objects Have Failed

Failure to Get Out of the Way

Autonomic Computing Project, IBM

It tells your heart how fast to beat, checks your blood’s sugar and oxygen levels, and
controls your pupils so the right amount of light reaches your eyes as you read these
words. It monitors your temperature and adjusts your blood flow and skin
functions to keep it at 98.6º F. It controls the digestion of your food and your
reaction to stress—it can even make your hair stand on end if you’re sufficiently
frightened. It carries out these functions across a wide range of external conditions,
always maintaining a steady internal state called homeostasis while readying your
body for the task at hand.
59 of 83
Objects Have Failed

Failure to Get Out of the Way

Autonomic Computing Project

But most significantly, it does all this without any conscious recognition or effort on
your part. This allows you to think about what you want to do, and not how you’ll
do it: you can make a mad dash for the train without having to calculate how
much faster to breathe and pump your heart, or if you’ll need that little dose of
adrenaline to make it through the doors before they close.

It’s as if the autonomic nervous system says to you, Don’t think about it—no need
to. I’ve got it all covered. That’s precisely how we need to build computing
systems—an approach we propose as autonomic computing.
60 of 83
Objects Have Failed

Failure to Get Out of the Way

...one of the most striking features of recent discussions in the history and
philosophy of science is the realization that events and developments ... occurred
only because some thinkers either decided not to be bound by certain ‘obvious’
methodological rules, or because they unwittingly broke them.

This liberal practice, I repeat, is not just a fact of the history of science. It is both
reasonable and absolutely necessary for the growth of knowledge. More specifically,
one can show the following: given any rule, however ‘fundamental’ or ‘necessary’
for science, there are always circumstances when it is advisable not only to ignore
the rule, but to adopt its opposite.

—Paul Feyerabend, Against Method
61 of 83
Objects Have Failed

Failure to Get Out of the Way

Feyerabend Project

• Understand the limitations of our current computing paradigm

• Understand the limitations of our current development methodologies

• Bring users—that is, people—into the design process

• Make programming easier by making computers do more of the work

• Use deconstruction to uncover marginalized issues and concepts

• Looking to other metaphors

• Three workshops so far, four more planned—using a tipping-point approach
62 of 83
Objects Have Failed

Failure to Get Out of the Way

Feyerabend Project

• Homeostasis, immune systems, self-repair, and other biological framings

• Physical-world-like constraints—laws, contiguity

• Blackboards, Linda, and rule-systems—use compute-power

• Additive systems—functionality by accretion not by modification

• Non-linear system-definition entry—instead of linear text

• Non-mathematical programming languages

• Sharing customizations

• Language co-mingling and sustained interaction instead of one-shot procedure
invocation in the form of questions/answers or commands

• Piecemeal growth, version skews, random failures

• Artists’ understanding, ambiguous truth
63 of 83
Objects Have Failed

Failure to Get Out of the Way

Feyerabend: Biological Framings of Problems in Computing

• Goal is to come up with “Hilbert Problems” for computing

• Need for new metaphors both for computing and for biology

Every living organism is the outward physical manifestation of internally coded,
inheritable, information.

–http://www.brooklyn.cuny.edu/bc/ahp/BioInfo/GP/Definition.html

Feyerabend Home Page:

http://www.dreamsongs.com/Feyerabend/Feyerabend.html
64 of 83
Objects Have Failed

Failure to Get Out of the Way

Lifetime Management

An object should be able to participate in its growth and evolution
65 of 83
Objects Have Failed

Failure to Get Out of the Way

Software Modeling is a new paradigm for creating software by modeling each
aspect of a desired system using appropriate high-level modeling languages within
an overall modeling architecture. Example aspects include user interfaces, data
models, security, data mappings, transaction boundaries, queuing/distribution,
exception handling, event models, algorithms, workflow, etc. The modeling
languages may be declarative, equational, logic/relational, functional, rule-based,
object-oriented, procedural, or simply structural—but must meet two criteria: 1)
be an effective way to precisely describe an aspect of system behavior, and 2) fit
together to form an overall system architecture. Although software models can be
interpreted, compilation of the models allows for powerful optimizations that allow
extremely configurable models to be resolved into efficient programs. The
transformation can also adapt the system to different contexts, for example a
PDA, GUI, or browser, and assist in generating documentation and test cases. To
date, no system for Software Modeling exists, although many of the building blocks
exist in active research areas, including domain-specific languages, partial
evaluation, meta-programming, aspect-oriented programming, informal modeling
notations, reusable frameworks, and pattern languages
66 of 83
Objects Have Failed

Failure to Get Out of the Way

Some open issues include modularity in modeling languages, debugging, and
extensibility of architectures and modeling languages. If this vision of Software
Modeling is achieved, it will introduce a new level of software reuse and program
readability, by focusing on concise descriptions of what makes one program
different from another (its fundamental models) while suppressing all the details
that every program shares with other similar programs.

–William Cook
67 of 83
Objects Have Failed

Failure to Embrace Other Paradigms

When OO became trendy, most of the other paradigms disappeared from serious
consideration, though most of them continued in a more underground way. Diver-
sity is the way we get innovation and invention, and OO cut that off. Whether we
can blame the OO people for this is unclear. Nevertheless, the fact is that some
important alternatives have been forced out of the picture, and we are stuck with a
bastardized version of OO today.
68 of 83
Objects Have Failed

Failure to Embrace Other Paradigms

• Where is logic programming?

• Where are expert systems?

• Where is data-driven programming?

• Where is functional programming?

• The good has forced out the excellent

Postmodernism: the tendency toward totalizing discourse (can I use that phrase
with an ironic tone?) has to stop. We need to give ourselves the freedom to use (or
create) the most effective means of description for a given situation. We must find
ways to let these different forms work together. Do not take a simplistic view of
postmodernism and try to turn it into the ultimate paradigm. Don’t fall into that
trap...

–William Cook
69 of 83
Objects Have Failed

Failure to Embrace Other Paradigms
70 of 83
Objects Have Failed

Failure to Embrace Other Paradigms
71 of 83
Objects Have Failed

Failure to Embrace Other Paradigms
72 of 83
Objects Have Failed

Failure to Embrace Other Paradigms
73 of 83
Objects Have Failed

Failure to Embrace Other Paradigms

Scheme-Based Web Server

A Web server provides operating system-style services. Like an operating system, a
server runs programs (e.g., CGI scripts). Like an operating system, a server
protects these programs from each other. And, like an operating system, a server
manages resources (e.g., network connections) for the programs it runs.

Some existing Web servers rely on the underlying operating system to implement
these services. Others fail to provide services due to shortcomings of the
implementation languages. In this paper, we show that implementing a Web
server in a suitably extended functional programming language is straightforward
and satisfies three major properties. First, the server delivers static content at a
performance level comparable to a conventional server. Second, the Web server
delivers dynamic content at five times the rate of a conventional server.
Considering the explosive growth of dynamically created Web pages, this
performance improvement is important. Finally, our server provides programming
mechanisms for the dynamic generation of Web content that are difficult to support
in a conventional server architecture
74 of 83
Objects Have Failed

Failure to Embrace Other Paradigms

The basis of our experiment is MrEd, an extension of Scheme. The
implementation of the server heavily exploits four extensions: first-class modules,
which help structure the server and represent server programs; preemptive threads;
which are needed to execute server programs; custodians, which manage the
resource consumption of server programs; and parameters, which control stateful
attributes of threads. The server programs also rely on Scheme’s capabilities for
manipulating continuations as first-class values. The paper shows which role each
construct plays in the construction of the server.

–Graunke, Krishnamurthi, Van der Hoeven and Felleisen, “Programming the Web with High-Level
Programming Languages”
75 of 83
Objects Have Failed

Failure to Embrace Other Paradigms

Macros: the basic problem is that a component that is sufficiently parameterized to
be re-usable will in practice be un-usable, either because its API is too huge, or it
will be too slow, or both. The Java Swing API is a good example. The only
possible solution is to allow some of the parameters (or configuration information)
to be resolved at compile time. When connected at runtime, components require
too much glue. Think of macros as allowing a programmer to write compile-time
code, not just run-time code. Reflection is a fine idea, but being forced to do it at
runtime is a bad idea. In this sense, Yacc is a macro language that we bolt onto the
side of our OO languages. We also had Lisp Macros, CPP macros, and these were
useful but messy. There is active research to clean them up and make them better.
But modern OO languages have thrown them out as unclean, and so it will be a
while before progress can be made.

–William Cook
76 of 83
Objects Have Failed

Failure of Obsessive Embrace

Languages and paradigms have been dismissed in the past because they are too slow,
programming in them is too hard, and applications are too large. Lisp, for example,
was dismissed because of this. Others are Prolog, ML, Smalltalk, and Haskell.

Java, for example, is slow and large, and some would argue it is hard to program in
since it takes the simple concepts of OO and blends them with static and other
inflexible ideas from other languages. But Java is completely accepted in the current
OO and mainstream worlds.

To be consistent would be nice.
77 of 83
Objects Have Failed

Failure of Obsessive Embrace

From “Lisp as an Alternative to Java” by Erann Gatt:

Two striking results are immediately obvious from the figures. First, development
time for the Lisp programs was significantly lower than the development time for
the C, C+, and Java programs. It was also significantly less variable. Development
time for Lisp ranged from a low of 2 hours to a high of 8.5, compared to a range of
3 to 25 hours for C and C++ and 4 to 63 hours for Java. Programmer experience
cannot account for the difference. The experience level was lower for Lisp
programmers than for both the other groups (an average of 6.2 years for Lisp
versus 9.6 for C and C++ and 7.7 for Java). The Lisp programs were also
significantly shorter than the C, C++, and Java programs. The Lisp programs
ranged from 51 to 182 lines of code. The mean was 119, the median was 134, and
the standard deviation was 10. The C, C++, and Java programs ranged from
107 to 614 lines, with a median of 244 and a mean of 277
78 of 83
Objects Have Failed

Failure of Obsessive Embrace

Second, although execution times of the fastest C and C++ programs were faster
than the fastest Lisp programs, the runtime performance of the Lisp programs in
the aggregate was substantially better than C and C++ (and vastly better than
Java). The median runtime for Lisp was 30 seconds versus 54 for C and C++.
The mean runtime was 41 seconds versus 165 for C and C++. Even more
striking is the low variability in the results. The standard deviation of the Lisp
runtimes was 11 seconds versus 77 for C and C++. Furthermore, much of the
variation in the Lisp data was due to a single outlier at 212 seconds (which was
produced by the programmer with the least Lisp experience: less than a year). If
this outlier is ignored, the mean is 29.8 seconds, essentially identical to the median,
and the standard deviation is only 2.6 seconds
79 of 83
Objects Have Failed

Failure of Obsessive Embrace

Memory consumption for Lisp was significantly higher than for C and C++ and
roughly comparable to Java. However, this result is somewhat misleading for two
reasons. First, Lisp and Java both perform internal memory management using
garbage collection, so often Lisp and Java runtimes will allocate memory from the
operating system that is not actually being used by the application program.
Second, the memory consumption of Lisp programs includes memory used by the
Lisp development environment, compiler, and runtime libraries. This allocation
can be substantially reduced by removing from the Lisp image features that are not
used by the application, an optimization we did not perform.

–Erann Gatt
80 of 83
Objects Have Failed

Failure to Work with Databases Well

Databases: we still haven’t gotten OOP to interact well with relational databases.
The problem is that OOP is all about encapsulating state and behavior, while
databases are all about separating state and behavior. Some people (usually
programming language people) say that databases will go away. They will not. But
I don’t think the DB people are worried—if you don’t look out, it is more likely
that programming languages will go away, or at least be diminished in scope. The
programming language notion of “persistence” is an anti-pattern. Until we make
room for both the OOP and RDBMS paradigms, there is going to continue to be
wasted effort (and bruised noses).

–William Cook

There’s something about DBs taking advantage of an economy of scale that PLs
don’t address. Most PLs have no facilities for managing large numbers of objects,
efficient iteration over them, or migrating them to a secondary store for efficiency,
let alone long-term persistence. I think the thing about DBs is that they’ve focused
on this to the exclusion of the language features.

–Warren Harris
81 of 83
Objects Have Failed

Summary

OO succeeded in solving the wrong problem, and we are busy trying to make the
solution more and more pure and clean in the hope that it will eventually work.
82 of 83
Objects Have Failed

83 of 83
Objects Have Failed

	The Essence of the Argument
	The Essence of the Argument
	The Essence of the Argument
	The Essence of the Argument
	The Essence of the Argument
	Failure to Embrace Failure
	Failure to Embrace Failure
	Failure to Embrace Failure
	Failure to Embrace Self-Healing
	Failure to Fight Off the Static Thinkers
	Failure to Fight Off the Static Thinkers
	Failure to Fight Off the Static Thinkers
	Failure to Fight Off the Static Thinkers
	Failure to Fight Off the Syntax Freaks
	Failure to Tell the Truth About Reuse
	Failure to Tell the Truth About Reuse
	Failure to Tell the Truth About Reuse
	Failure to Tell the Truth About Reuse
	Failure to Tell the Truth About Reuse
	Failure to Tell the Truth About Reuse
	Failure to Tell the Truth About Reuse
	Failure to Tell the Truth About Reuse
	Failure to Tell the Truth About Reuse
	Failure of Encapsulation
	Failure of Encapsulation
	Failure of Encapsulation
	Failure of Encapsulation
	Failure to Improve Software Development
	Failure to Tell the Truth About Design
	Failure to Tell the Truth About Design
	Failure to Tell the Truth About Design
	Babbage on Design
	Babbage on Design
	Failure to Tell the Truth About Design
	Failure to Tell the Truth About Design
	Failure to Limit the Grand Narrative
	Failure to Limit the Grand Narrative
	.com Collapse
	.com Collapse
	.com Collapse
	.com Collapse
	Failure to Give Form a Chance Over Structure
	Failure to Give Form a Chance Over Structure
	Failure to Give Form a Chance Over Structure
	Failure to be Truthful about Learning
	Failure to be Truthful about Learning
	Failure to be Truthful about Learning
	Failure to be Truthful about Learning
	Failure to be Truthful about Learning
	Failure of Admitting Ordinary People to the Guild
	Failure to Help Teach Software Arts
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Get Out of the Way
	Failure to Embrace Other Paradigms
	Failure to Embrace Other Paradigms
	Failure to Embrace Other Paradigms
	Failure to Embrace Other Paradigms
	Failure to Embrace Other Paradigms
	Failure to Embrace Other Paradigms
	Failure to Embrace Other Paradigms
	Failure to Embrace Other Paradigms
	Failure to Embrace Other Paradigms
	Failure of Obsessive Embrace
	Failure of Obsessive Embrace
	Failure of Obsessive Embrace
	Failure of Obsessive Embrace
	Failure to Work with Databases Well
	Summary

