
1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

Onward!’14, October 20–24, 2014, Portland, Oregon, USA.
Copyright is held by the author. Publication rights licensed to ACM.
ACM 978-1-4503-2585-1/14/10…$15.00.
http://dx.doi.org/10.1145/2661136.2661155

I Throw Itching Powder at Tulips

Richard P. Gabriel
IBM Research

rpg@dreamsongs.com

program. But it also works for physical devices, biological
systems, and people too. For example, when we teach a child
to add, we are creating a program that builds on the child’s
existing ability to count on fingers. To the child the notion
of adding is novel, but perhaps counting on fingers is not. At
first, addition is a program; later it is an ability.

When we describe how to drive from one place to another,
that’s a program that uses the driver’s ability to understand
directions, to drive, and to recognize telltales to get that per-
son from one place to another.

When people try to put together large software systems—
large enough that teams are needed and dangerous enough
that safety is crucial—they apply engineering techniques (as
best they can) to the project. That’s the start of software en-
gineering. When people wonder whether the program they
have devised really will achieve its desired purpose using the
underlying mechanisms of the “computer,” that’s the start of
the theory of computation and algorithm design.

In recent years the conflict of more traditional software
engineering approaches and agile have made a muddle of the
concept of programming—to a degree where sometimes only
software engineering is considered programming. I think.

t

Software engineering is not what I do when I program. I am
programming. I write software as part of doing science. I use
software as a machine or instrument to explore how the mind
/ brain might work. Not when the mind’s thinking—that’s
old AI. I mean when people are creating.

Software engineering is for producing something that
someone can describe, either using specifications (the old-
fashioned way) or a product backlog (or some other suchlike
thing in an agile setting). I don’t do anything like that. And
software engineering is about producing software in a group.

The way we teach programming makes everything software
engineering. Pundits’ statements are deceiving:

Programmers mediate between the negotiated and un-
certain truths of business and the crisp, uncompromising
domain of bits and bytes and higher constructed types.
–Kevlin Henney, 97 Things Every Programmer Should Know,

2010 [1]

Abstract

Programming comes in many shapes & sizes.
Categories and Subject Descriptors D.2.9 [Software process
models]
General Terms Experimentation
Keywords Agile; science; programming; natural language
generation

t

I want to remind you of something simple: Programming
and software engineering are not the same things. Neither
is programming the same as algorithm design. We’ve tan-
gled the several notions of programming—if we try we can
unweave them, but sometimes we push on too quickly / get
confused. William Griswold ventured this definition of soft-
ware engineering:

The practice of constructing software to satisfy all
stakeholder requirements so as to maximize value

–William Griswold, personal communication, 2013

Programming is more fundamental. Venturing a guess, I
would define programming as designing a set of mechanisms
to enable some device (very broadly construed) to do some-
thing it normally could not using mechanisms it already has.
Thinking about computers is the simple case: programming
is putting together instructions in a programming language
that is easy for people to understand which cause the under-
lying mechanisms of the computer—including its physical
and electrical components—to realize the purpose of the

2

This looks correct, innocent even. When I program I in-
deed worry whether the programs I write will do something
like what I intend; but there are no “truths of business” in
sight. The most progressive teachers reinforce this and other
stereotypes, like this programming assignment:

Develop a function that when given an initial amount
of money (called the principal), a simple annual inter-
est rate, and a number of months will compute the bal-
ance at the end of that time. Assume that no additional
deposits or withdrawals are made and that a month is
1/12 of a year. Total interest is the product of the prin-
cipal, the annual interest rate expressed as a decimal,
and the number of years.

–Felleisen et al, How To Design Programs [3]

A business-related problem; a problem posed to the stu-
dent by an outsider; a problem. Everything that the program
should accomplish is spelled out, by an expert instructor or

“customer”—of course it is solvable, of course it is achievable,
of course all thinking is reduced to whether the program
achieves its intended purpose using the underlying mecha-
nisms of the computer at hand. Programming happens, but
in a limited context. A very well-respected professor ventured
this opinion to me:

I think the biggest mistake we make with the starting
point for undergraduate education is that we introduce
programming at all. The right starting point, IMHO, is
requirements and specification together with the asso-
ciated mathematics that they require.

–anonymous, ruminating on a first course

Problem solving; being told what to solve, what goals to
achieve. This is hammered into students and job seekers
who are asked repeatedly to solve problems (homework /
job interviews). The idea of “a problem” doesn’t necessar-
ily encompass the certitude of solution, but as taught in the
context of programming, the unintended implication is that
a problem is a puzzle, and puzzles have solutions. A puzzle
is a test of ingenuity.

t

My characterization of why I program—building a software
machine to explore nature and create a theory—might remind
you of Peter Naur’s “Programming as Theory Building” [2].
Naur is talking about a related but different task—the creation
of software as the final goal:

…the primary aim of programming is to have the
programmers build a theory of the way the matters at
hand may be supported by the execution of a program.

–Peter Naur [2]

The “matters at hand” are roughly the stuff in the real world
that the program being built needs to handle, and the theory
in question is a conceptual framework for understanding the
means by which software achieves that handling.

In my case, the theory is a scientific theory to be discovered,
and the software is an instrument to help discover / forge that
theory, which the software does by reacting to or revealing
something about the material agency of the world. The re-
sulting software may or may not be interesting by itself. My
model of doing science with software can be used to discover
the Naurish theories programmers build to create software,
and it might happen that the software created in my model
is the software the programmers eventually create.

t

Productivity and value are essentials for business program-
ming. Jeff Sutherland wrote this about Scrum:

 Scrum is a simple framework used to organize teams
and get work done more productively with higher qual-
ity. It allows teams to choose the amount of work to be
done and decide how best to do it, thereby providing a
more enjoyable and productive working environment.
Scrum focuses on prioritizing work based on business
value, improving the usefulness of what is delivered, and
increasing revenue, particularly early revenue.

–Jeff Sutherland, A Brief Introduction to Scrum, 2007 [4]

Notice that the assumed context is business, creating value
for a customer who drives requirements and judges accept-
ability, and programming while consuming cash slowly and
producing revenues quickly. After being taught (implicitly)
that programming begins when someone (a teacher) tells
you to start, and that the goal / topic / domain / problem for
programming is given (by that teacher), working as part of
someone else’s machine is not foreign. Sutherland continues:

Designed to adapt to changing requirements during the
development process at short, regular intervals, Scrum
allows teams to prioritize customer requirements and
adapt the work product in real time to customer needs.
By doing this, Scrum provides what the customer wants
at the time of delivery (improving customer satisfaction)
while eliminating waste (work that is not highly valued
by the customer).

–Jeff Sutherland, A Brief Introduction to Scrum, 2007 [4]

Agile’s contribution was to turn on its head the follow-
ing premise of earlier software engineering methodologies:
change is expensive and needs to be avoided. Or at least lim-
ited to the earliest possible parts of requirements gathering
and design. The idea is that making a change to a design is
cheaper than making a change to an implementation. Steve
McConnell tells it this way:

3

In the worst case, reworking a software requirements
problem once the software is in operation typically costs
50 to 200 times what it would take to rework the problem
in the requirements stage (Boehm and Papaccio 1988).
It’s easy to understand why. A 1-sentence requirement
can expand into 5 pages of design diagrams, then into
500 lines of code, 15 pages of user documentation, and
a few dozen test cases. It’s cheaper to correct an error
in that 1-sentence requirement at requirements time
than it is after design, code, user documentation, and
test cases have been written to it.

–Steve McConnell, 1996 [5]

As if correcting that 1-sentence requirement were that easy.
Just change some of the words, right? It’s easy, for example, to
change plans for a vacation from driving to Bisbee, Arizona,
to flying to the French Riviera—just change the modes of
transportation and some hotels in the plan—but the cost of
the change will hit hard later. This sort of flawed thinking is
super-easy to fall prey to while sharpening one’s gullibility for
thinking in stereotypes. If it’s easy to change a bad requirement
to a good one, think how easy it is to change a good require-
ment to bad. Well, all one need do is expand the 1-sentence
to 5 pages of design diagrams and think about them; or then
into 500 lines of code and think about them; or into 15 pages
of user documentation and then a few dozen test cases and
think about them—that’s when you see the problem. Making
the change is easy while knowing the change is smart is hard.

This is where agile comes in. The bug, they claim, is that as
long as the code being produced isn’t running in a way that
the “customer” can observe, errors in requirements can per-
sist longer than need be—because the customer is unable to
observe and then intervene. They say

Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

–Agile Manifesto Principles [6]

And this enables them to

Welcome changing requirements, even late in develop-
ment. Agile processes harness change for the customer’s
competitive advantage.

–Agile Manifesto Principles [6]

The differences between up front planning and agile ap-
proaches seem similar to the differences in approaches to
art: experimental versus conceptual. To wit: for experimen-
tal artists:

… planning a painting is unimportant. The subject
selected might be simply a convenient object of study,
and frequently the artist returns to work on a motif he
has used in the past. Some experimental painters begin

without a specific subject in mind, preferring instead
to let the subject emerge as they work. Experimental
painters rarely make elaborate preparatory sketches.
Their most important decisions are made during the
working stage. The artist typically alternates between
applying paint and examining the emerging image; at
each point, how he develops the image depends on his
reaction to what he sees.

–Galenson, Old Masters and Young Geniuses [7]

For conceptual artists:

…planning is the most important stage. Before he begins
working, the conceptual artist wants to have a clear vi-
sion either of the completed work or of the process that
will produce it. Conceptual artists consequently often
make detailed preparatory sketches or other plans for
a painting. With the difficult decisions already made in
the planning stage, working and stopping are straight-
forward. The artist executes the plan and stops when
he has completed it.

...extreme practitioners...make all the decisions for a
work before beginning it. It is unclear, however, if this
is literally possible. There are artists who came close
to it, and perhaps achieved it, during the 1960s, by
making plans for their work and having these plans
executed by others.

–Galenson, Old Masters and Young Geniuses [7]

Picasso was a conceptual artist (mostly), and he did Big De-
sign Up Front. If there was a key 1-sentence requirement that
made possible his masterpiece, Les Demoiselles d’Avignon [8],
it took Picasso more than 400 studies and sketches (a record
for artistic preparation) to get it right.

But as always, both software engineering camps are vas-
sals—they are handed problems, given direction, and paid
for piecework. In general.

t

None of this is new thinking. And it’s not really at the heart
of the matter that’s engaging me. Right now I am using pro-
gramming very differently from what the software engineer-
ing approaches assume and celebrate, and also from what
teachers of programming prepare students for. I program
to explore scientific questions. What I produce are instru-
ments that help me peer into the unknown. I don’t work on
puzzles but on mysteries. I don’t have customers; neither
requirements; nor specifications; nor test cases (really); nor
design issues of the same sorts as software engineers; there
are no roadmaps; everything is a prototype and also an end-
product; I don’t know whether the next thing I try will work,
can work, should work; and I am profoundly disappointed
when my programs fail to surprise me. If traditional software
engineering and agile define two points on a spectrum, what

4

software delivery to businesses. This is not a puzzle because
there is no correct answer nor is anyone around to declare
my program’s counter-messages acceptable.

t

Commercial software is generally not exciting software. It
rarely breaks new ground; if anything is difficult it’s diffi-
cult because its algorithms might be hard or performance is
elusive or because the right kinds of data structures are hard
to pin down. Of course there are exceptions. In many cases
these difficulties are hidden by frameworks, middleware, li-
braries, and the like.

And though what the software does might be boring, its
design and construction are likely not, and there is tremen-
dous pleasure in designing and building something of value
and beauty. But rarely is the construction of commercial soft-
ware a grand challenge—sometimes it is, but not frequently.
This reality makes the task of creating commercial software
mostly a matter of getting the details the way the customer
likes. Admirable, but not my game. Consider:

But merely extending knowledge a step further is
not developing science. Breeding homing pigeons that
could cover a given space with ever increasing rapidity
did not give us the laws of telegraphy, nor did breeding
faster horses bring us the steam locomotive.

–Edward J. v. K. Menge [9]

I do science.
t

The scenario I work from is this: some group is engaged in a
persuasion campaign that deserves to be thwarted—this can
be a phishing attack (“your account has been compromised;
please re-enter your critical information here”), a protest that
could become dangerous (“WBC will picket the sodomite
whorehouse and dog kennel masquerading as St. Agnes Cath-
olic Church in religious protest and warning”), or terrorist
plotting. Through monitoring social media, the organizers
of the persuasion campaign and their social networks are
identified. Analysis produces the material required to plan
a counter-messaging campaign. My program delivers that
campaign, using the materials gathered.

What makes this hard is that it isn’t likely that telling the
persuaders “don’t do that” is going to work, nor is it clear
that those being targeted will respond more to my messages
than to the persuaders’. What needs to be understood are the
motivations, the objectives, the incentives, and the styles of
communication likely to work as dissuasion.

I need to figure out a program that will generate messages
that include influences designed to dissuade and that con-
siders personal characteristics of the message recipients. For
example an influence might be a bias toward choosing words
with cheerful connotations or using Biblical rhythms to im-

I do is as far from agile as agile is from traditional software
engineering, with agile in the middle between my spot and
traditional SE.

This is how I see it.
My next task is to show you what I do and let you judge

whether it depicts programming differently from how soft-
ware engineers and algorithm designers see it—differently
from how you see it. I believe programming is a fundamental
tool of discovery and creativity which has been harnessed to
serve the needs of industry, capitalism, as well as the greater
good—that the boring parts of programming are immensely
valuable, but also that those boring parts contain islands of
programming like the continent I live on.

t

I am working on a natural language generation (NLG) system
as part of a DARPA project. The specific thrust of my work is
to take a template of a counter-message and tailor it for the
audience—that is, to the person or people to whom it will
be sent. This Template Reviser (as I originally called it—it’s
called InkWell now) is intended to be a precursor to a full-
blown natural language generation (NLG) system. I worked
on an NLG system for my PhD back in the late 1970s, and
this can be viewed as a matured sequel.

When I worked on NLG back then, I had an interest in
writing and creativity but not a lot of experience or education.
Since then I’ve worked a bit on understanding creativity, but
more importantly I got an MFA in Creative Writing, namely
in poetry. I’ve published a small book of poems, and have been
writing a poem a day for fourteen years now. I’ve written a
novel (unpublished), and have four other published books.
With that education and experience I’ve come to realize that
writing (creatively) involves a wide variety of implicit influ-
ences and contributing factors—influences and factors that
determine word choice, phrasing, and structure. The plain
meanings of words can tell one story, and other stories can
be told by the connotations of those words, linkages between
ideas and images can be made with sound—the so-called music
of the words—and secondary and tertiary structures can be
established by using these and other writing craft elements.

The DARPA project is called “Social Media in Strategic
Communication” (SMISC). One of its statements of work:

Take a template of a counter-message and tailor it
for the audience.

This goal is the extent of my requirements and my only
interaction with the “customer.” I interact with researchers
through conversations, email, research papers, and meetings,
but the purpose of those interactions is to get ideas, report on
findings, and to gather encouragement. In no way do these
interactions seem like instructions, direction, or orders. I be-
lieve that those sorts of things pop up in my work, but from a
very different source, and for very different purposes than for

5

didn’t do, but I needed to understand it well enough to em-
bed it in my NLG program.

The process works by examining the words in a writing
sample, and counting the numbers of words in each of 68
categories ([Figure 1] on the next page). This approach is
based on the work of James Pennebaker called “Linguistic
Inquiry and Word Count” (LIWC—pronounced “luke”) [12].
This yields a vector of percentages—for each category there
is a corresponding percentage of words in the document
that fall into that category. These counts are determined by
a dictionary that maps words to categories. For example, the
word “agony” maps to categories 12, 16, and 19, which are
Affect, Negative affect, and Sadness, resp. Using these prob-
abilities, it’s possible to compute an estimate of the writer’s
Big-Five personality traits, using the work of Tal Yarkoni [13].
Yarkoni found correlations between LIWC scores and the Big
Five traits, and these correlations are expressed as a simple
linear combination of the probabilities that LIWC computes.

Here’s an example of all this. Suppose this is a text we
want to analyze:

Reading Gabriel’s essays is pure agony.

The LIWC scores for this are as follows:

Category Count Percentage of all
Words

Sadness (19) 1 16.7%
Cognition (20) 1 16.7%
Perception (27) 1 16.7%
Certainty (26) 1 16.7%
Seeing (28) 1 16.7%
Affect (12) 1 16.7%
Present (39) 1 16.7%
Negative Emotion (16) 1 16.7%

This of course is too small a sample for accuracy—the LIWC
dictionary recognizes only these words: reading, is, agony—
but this is just an example of how the analysis works.

Applying Yarkoni’s coefficients we get the following Big-
Five analysis:

Trait Value
Agreeableness -4.2%
Conscientiousness -16.34%
Extraversion –
Neuroticism 9.90%
Openness -8.51%

These values should be interpreted like this: The sign says
whether the trait is evident (+) or its opposite is (-); the mag-

ply moral authority. A personal characteristic could be a set
of perceived needs and attitudes.

My approach is to develop a set of templates—but not the
boring kind you might imagine—figure out how to select the
right ones, figure out how to compose them elegantly, and
determine how to tune them for the audience.

One of the primary ways to appeal to an audience is to ex-
hibit a particular set of personality traits. The group I work
with in the lab uses the so-called “Big Five” personality traits
[10] [11] with a good dose of other personality facets and
values. Big Five is a consolidation of approaches to assessing
personality based on examining texts people use to describe
themselves. For example, if a person says:

• I am the life of the party
• I don’t mind being the center of attention
• I feel comfortable around people
• I start conversations
• I talk to a lot of different people at parties

this is evidence that the person is extraverted. Each of the
five traits represents a spectrum with the following endpoints
and definitions:

• Openness: inventive/curious vs. consistent/cautious. Open-
ness reflects the degree of intellectual curiosity, creativity,
and a preference for novelty and variety.

• Conscientiousness: efficient/organized vs. easy-going/care-
less. Conscientiousness reflects a preference for organiza-
tion, dependability, discipline, duty, and achievement—
planned instead of spontaneous.

• Extraversion: outgoing/energetic vs. solitary/reserved. Ex-
traversion represents energy, positive emotions, urgency,
assertiveness, sociability, and a tendency to seek stimula-
tion. Talkativeness.

• Agreeableness: friendly/compassionate vs. analytical/de-
tached. Agreeableness is compassion and cooperation rath-
er than suspicion and antagonism; it represents a trusting
and helpful approach.

• Neuroticism: sensitive/nervous vs. secure/confident. Neu-
roticism is the tendency to experience unpleasant emotions
easily (anger, anxiety, depression, and vulnerability); it re-
fers to emotional stability and impulse control. [11]

Personality traits are determined by a sort of simple lin-
guistic analysis—“to what degree do you agree with the fol-
lowing statements?” But researchers in my group have taken
that much further. Rather than looking at responses to di-
rected questions, the analysis looks at texts people write. This
work is based on writing samples from volunteers who also
have taken personality tests, and then machine learning was
used to establish a function that takes text and produces a
judgment about personality. This is pretty clever work that I

6

nitude ranges from 0% to 100%, which represents the range
of theoretically possible values. Extraversion is left blank be-
cause there were no Yarkoni coefficients associated with it in
the set of non-zero elements of the LIWC vector—meaning
there is no evidence.

t

A loud bray may be heard almost two miles away.
–traditional

The Agile Manifesto—when I saw it the first time I laughed
like a jackass. I still chuckle and it’s been years:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

…not because it’s wrong, but because I always have the feeling
that the authors of this list believed they’d taken the righthand
statements and stated their opposites as their favored values—
that they thought, for example, that “working software” is
an opposite of “comprehensive documentation,” and that by
doing so they have succeeded in making a set of outrageous
(but true) statements. (I love agile development, so don’t get
the wrong impression.) Take a look at my aphorisms for pro-
grammers doing science (immediately before the references).

Here’s what I mean, example-wise. The subtitle of Kent
Beck’s extreme programming book is “Embrace Change” [14].
This and the last bullet above make it seem like embracing
change is a radical new idea, and as completely different from
design up front as you can get. But embracing change is the
midpoint of the range. One endpoint is to fear change so
much you plan forever; the midpoint is to embrace change;
and the opposite endpoint is to inject change / suggest it /
insist on it. Other dimensions might exist.

In my world of programming I use the following manifesto:

• Nature over individuals and interactions
• Insights over working software
• Problem engagement over customer collaboration
• Grappling with mystery over responding to change

Let’s look at one of these for a minute. What does “insights
over working software” mean?

To understand how this LIWC / Big Five / Yarkoni thing
works, I decided to program it up myself. Moreover, I needed
code for this in the inner loop for the NLG system I was go-
ing to write.

After this exercise I had working software right in front of
me. My results replicated all the published results I could find
as well as the results from my group’s Java implementation.
While reading the Yarkoni paper I noticed this statement:

The results converge with other recent findings sug-
gesting that, contrary to popular wisdom, people do
not present themselves in an idealized and overly posi-
tive way online, and maintain online identities that
reflect the way they genuinely see themselves and are
seen by others.

–Yarkoni [13]

I slightly mistook this to be saying that people cannot very
easily hide their personalities when they write. The work of
Pennebaker seemed predicated on this as well. And earlier
in the Yarkoni paper I read, “previous studies have found
systematic associations between personality and individual
differences in word use” [13]. At the top of the next page is a
set of Big-Five measurements of six corpora. The ones inside
the red outlines refer to things I have written; looking from
left to right, they are my book “Patterns of Software,” a col-
lection of about 5,000 of my poems (that’s not a typo—five
thousand), my book “Writers’ Workshops and the Work of
Making Things,” and an unpublished novel I wrote (“Tradi-
tional Salvation”) [Figure 2]. That is, essays, poems, nonfic-
tion, and fiction. The next two are “Leaves of Grass” by Walt
Whitman and the collected stories of Ernest Hemingway.

One thing that became clear to me looking at this chart is
that I don’t correlate well with myself. The red outlines are
around things I wrote—each a different genre. The righthand
figure on the next page ([Figure 3]) is grouped according to
genre a bit. In the red outlines are my poems and Whitman’s;
not in outlines are my novel and Hemingway’s stories. Now
things look correlated better—but by genre and not by person.

I decided to do an experiment: what if instead of the Big

All pronouns Numbers Cause@Causation Social Space Leisure Symptoms & sensations

1st person singular Affect Insight Communication Up Home Sexual

1st person plural Positive affect Discrepancy Reference to others Down Sport/exercise Eating/drinking

Total 1st person Positive feelings Inhibition Friends Inclusion TV/movies Sleeping/dreaming

Total 2nd person Optimism Tentativeness Family Exclusion Music Grooming

Total 3rd person Negative affect Certainty Humans Motion Money Swear words

Negations anxiety Sensation/perception Time Occupation Metaphysical Non-fluencies

Assents Anger Seeing Past School Religion Fillers

Articles Sadness Hearing Present Job Death

Prepositions Cognition Touching Future Achievement Physical states/factors

Figure 1

7

Five personality traits, I postulated three genre-based traits:
Poetry, Fiction, and Nonfiction. And like the work my group
did, what if I used machine learning to discover coefficients
that would map LIWC scores to genres?

My first attempt was a failure. I took a set of training
corpora, labeled them with binary judgments—poetry, fic-
tion, or nonfiction, exclusively—and used a simple machine
learning algorithm to develop classifiers for each genre. The
machine learning algorithm did not converge. If I looked at
it as a software engineering problem, I would have explored
whether I had coded the machine learning algorithm cor-
rectly, or whether perhaps I had not applied it correctly. I
had been using this algorithm and my implementation of it
for about ten years, so that didn’t seem like a good approach.

The reason for divergence was that it was foolish to think a
piece of literature is purely poetry or any of the other genres.
What about narrative poetry, lyrical fiction? I then created a
training target where each corpus was labeled as a mixture of
genres [Figure 4]. With this the machine learning algorithm
converged. When I tested it, though, it was a little off. I tacked
on two decision trees—one for the main genre and another for
a thing I called a “mixin genre,” which is a kind of secondary
characteristic. For example, Shakespeare’s Hamlet is classified
by my classifier as Fiction with a Poetry mixin—not a bad
result. Here are the two decision trees—one for main genre:

-5.0 ≤ P (poetry)
-5.0 ≤ NF (nonfiction)
otherwise (fiction)

and the other for mixin genre:

-10.0 ≤ P < -5.0 (poetry mixin)
-10.0 ≤ NF < -5.0 (nonfiction mixin)
35.0 ≤ F (fiction mixin)

P, NF, and F are the outputs of the three learned sensors. The
results of the classifier on a number of corpora are in [Fig-
ure 5]. (The parenthetical judgments are what those works
are considered to be in literary circles.)

The system correctly identifies genre more than 80% of
the time, and in the cases where it isn’t completely right, it’s
half-right 37% of the time. The predicate shows that fiction
is not special, and analyzing what the genre sensors look for,
one can identify the characteristics that determine genre.

This work also shows that the LIWC instrument probably
mixes a variety of detected signals, and so it is not a pure
sentiment instrument.

t

Agile goes half way wrt change: from resist change to welcome
change—what about inject change? By creating opportuni-
ties for / making changes, a scientist explores, then discov-
ers, and later understands. The world was pretty satisfied
with Newtonian relativity for a long time, but physicists kept
monkeying with the ideas.

The genre detector shows this. I had working code that was
perfectly fine, and my employer doesn’t really care about lit-
erature and creative writing. Nevertheless, my genre explora-
tion made my group question and explore the nature of the
(computational) instruments they were building—along with
the science behind it. Solid ground truth is hard to come by
because in most cases it comes from studies of undergradu-
ates and Mechanical Turkers. This implies that it is usually a
bad plan to sit pat on the current (scientific) understanding
and the code that realizes that understanding’s implications.

t

A scientific pursuit has no boss or teacher, aside from nature
or reality—a creature not interested in collaboration. If you
lock yourself away with theory and rumination, you will dig
yourself a hole with you always at the bottom, because the
mind can’t so easily work on pure thought-stuff. The mind
needs something to play with, and the more visceral that play,
the better. Even writing things down and staring at them,
or tossing equations or expressions on the chalk board and
erasing / revising is needed. Software is a machine scientists
dream up to explore nature.

Usually software is a way to explore data associated with
scientific research. Gather a pile of data and then analyze

-15

-10

-5

0

5

10

15

20

NeuroticismAgreeablnessOpennessExtraversionConscientiousness
-15

-10

-5

0

5

10

15

20

NeuroticismAgreeablnessOpennessExtraversionConscientiousness

Figure 2 Figure 3

Gabriel

Whitman
Hemingway Poetry: Gabriel & Whitman

Fiction: Gabriel & Hemingway

8

it. In the situations I’m talking about, the software itself is a
direct path into the material being studied—this following
the physicist turned philosopher, Andrew Pickering [16], who
says that science is a process of finding a stable point between
a conceptual framework (a theory) and the material agency
of the world as revealed through machines—or instruments.
Scientists build machines to explore reality, and what the
machine does or reports is interpreted according to the con-
ceptual framework. When the machine reports something
unexpected or contradictory (a resistance in Pickering’s ter-
minology), the conceptual framework is adjusted along with
the machine (usually) (each adjustment is called an “accom-
modation”), and more observations are made. Eventually,
the conceptual framework, the machine, and the resistances
settle down, and a fact is manufactured.

In this sort of scientific exploration, the software will talk
to you. But I don’t mean that it’s talking about itself—the code
I write is an intermediary between my research thinking and
the part of the world I’m looking at. It’s like a telescope from
the early days of science or the Large Hadron Collider these
days. I don’t accept working software / I keep pushing it / I
keep changing it until an insight drops out.

In the case of the genre exploration, the tool being devel-
oped helped me stumble on something only tangentially re-
lated to my direct scientific work. This happens all the time in
other scientific disciplines. Many, though, consider software
and programming a hard-headed tool like a shovel and there-
fore not suited for direct exploration. This is silly, of course.

t

Current methodologies avoid my type of programming. It
isn’t software for hire where business value is being created,
nor is it defense software. Defense considerations—the code
must work—led to the heavy methodologies.

One of the little secrets about business is that firms are
very conservative. They want to win by being “better,” but
only enough better to win—not a lot better. Business value is
mostly about catching up quickly. Rarely, I think, is it about
being quick as a first mover. First movers come from the kind
of programming & science I am talking about, and usually
that takes place in research labs, universities where startups
are incubated, etc. The rules I use make no sense for defense
nor for business.

t

Another purpose of InkWell is to serve as the software half of
a writing centaur, a centaur being a human/machine collabo-
ration. InkWell takes text as input and a (largish) set of con-
straints, and produces a number of possible revisions while
endeavoring to satisfy and balance the stated constraints. A
writer uses InkWell to assist with revisions, and the work-
flow is iterative with the writer creating / tweaking textual
templates and constraints, and InkWell producing revisions,
which feed back into the process.

The term centaur originated in computer chess, and refers
to the pairing of a human chess player and a chess-playing
computer, usually a PC or laptop. Garry Kasparov [17] came
up with the idea of such collaborations, and the chess com-
munity supplied the colorful and metaphorical name. There
are some major differences between a chess program and
InkWell as computer halves of centaurs. The chess playing

Corpus Poetry Fiction NonFiction
Poemsrpg (P) 85.0 -10.0 -10.0

Leaves of Grass (P) 95.0 -30.0 -50.0

Traditional Salvation (F) -10.0 80.0 -25.0

Hemingway (F) -10.0 95.0 -75.0

Patterns Of Software (NF) -35.0 -5.0 95.0

Writers’ Workshop (NF) -10.0 -2.0 90.0

Faulkner (F) -5.0 95.0 -65.0

Ulysses (F) -5.0 90.0 -15.0

Emily Dickinson (P) 95.0 -25.0 -80.0

Unabomber (NF) -70.0 -50.0 85.0

Wizard of Oz (F) -25.0 85.0 -35.0

Call Of The Wild (F) -12.0 87.0 -55.0

Huckleberry Finn (F) -5.0 45.0 -40.0

Metamorphosis (F) -25.0 70.0 -35.0

Origin Of Species (NF) -80.0 -10.0 75.0

Figure 4

Corpus Classfication Corpus Classification
Knott (P) Poetry Gribble / Fedora (P) Poetry

Trakl (P) Poetry Janet Holmes / Hu-
manophone (P) Fiction[Poetry]

Lanier (P) Poetry Janet Holmes /
F2F (P) Poetry

The Wasteland (P) Poetry Front Page NYT
Article (NF) Fiction[Nonfiction]

Moby Dick (F) Fiction Richard Schmitt /
Kodiak (F) Poetry[Fiction]

Gay Stories (F) Fiction
Richard Schmitt /
A Year of Counsel-

ing (F)
Poetry[Fiction]

To Kill a Mocking-
bird (F) Fiction

Harper / Prac.
Found. for Prog.

Lang (NF)
Nonfiction

Hamlet (?) Fiction[Poetry] Ellen Bryant Voigt /
Song and Story (P) Poetry

Bertrand Russell
(NF) Nonfiction Tennyson / In Me-

moriam (P) Poetry

Charles Babbage
(NF) Nonfiction US Constitution

(NF) Nonfiction

Darwin (NF) Nonfiction Tom Lux / I Love
You Sweatheart (P) Fiction

Crazy CS Person
(NF) Poetry rpg / Sharp Tone (P) Poetry

Bible (?) Fiction[Poetry] Cass Pursell / Men
and Stones (F) Fiction

Pete Turchi’s New
Book (NF) Fiction[Nonfiction] Proust’s Longest

Sentence (F) Fiction

Figure 5

9

computer helps avoid blunders the human might make. Ink-
Well suggests avenues of exploration the human might miss.

There are two goals InkWell serves:

• mimic a specific writer
• assist creativity in writing

InkWell takes a template (example in the Appendix ([Fig-
ure A1]), which is a specification of original text annotated
with which words are variable and characteristics of those
words for InkWell to consider. There are also a number of other,
writing-related constraints written either as local bindings
in the template or stated in the UI, which specifies global pa-
rameters and constraints. The example in [Figure A1] shows
how a writer might express a template describing Robert
Frost’s “Stopping by Woods on a Snowy Evening” [15]. Here
are some of the general ways to mimic a writer:

• match specified (or measured) Big Five personality traits
and associated personality facets; match basic human val-
ues as described by Schwartz [18] and Chen [19]

• match a writer’s word choice: favored words, word music,
word length, favored mood

• match writing patterns: n-grams (2-, 3-, 4-, and 5-grams);
an n-gram is a series of n words in a row that has appeared
in a naturally occurring, existing text

Assist Creativity: every writer has days when they “have it”
and days when they don’t. Books, articles, blog posts, courses,
coaches, and workshops exist to help writers defeat writer’s
block. Or some have just a little less talent than preferred.
InkWell can help here too, using these techniques:

• use conservative or wild synonym choice (associative ver-
sus dissociative writing)—search diameter, search distance,
preference for nearby, preference for far away, various syn-
onym aspects (hypernyms, meronyms, etc)

• satisfy constraints like word-length, alternative meanings,
word rhythms

• favor echoes (similar sounding words) and rhymes
• select words based on ontology (concepts), proximity in

the synonym network, or a cluster of word-centric con-
cepts to favor or avoid

• favor specific word groups or avoid them
• specify constraints, both local and global
• take into account a writing mood specified by a construct

called a halo

Any constraint can be inverted: e.g. sound like a particular
writer or sound like anyone but that writer, rhyme two words
or ensure they don’t, observe n-grams or deliberately violate
them. InkWell produces any number of candidate revisions,
and the writer can pick and choose revisions and wordings.

The notion of a halo is a good example of mimicking writ-
erly thinking. A halo is a mood device. You specify a set of
words, and InkWell starts with each of those words and fans
out along synonym arcs to other words. Where several of
these wavefronts hit, those words are given more weight in
the revision process. Looking at Frost’s poem, the line

The woods are lovely, dark, and deep

is revised this way

The woods are bright, light, and high

when given the happiness halo:

Delighted, Ebullient, Ecstatic, Elated, Energetic, En-
thusiastic, Euphoric, Excited, Exhilarated, Overjoyed,
Thrilled, Tickled pink, Turned on, Vibrant, Zippy

and this way

The woods are hot, rough, and cold

when given the anger halo:

Affronted, Belligerent, Bitter, Burned up, Enraged,
Fuming, Furious, Heated, Incensed, Infuriated, Intense,
Outraged, Provoked, Seething, Storming, Truculent,
Vengeful, Vindictive, Wild

t

A long time ago (~1980) I wrote a simple NLG system—my
PhD thesis was this: a generalized planning system based on
loose descriptions of individual agents, heuristic matching,
resource-limited computation, and mixed planning and ex-
ecution could do a good job of producing text [20]. The sys-
tem was called Yh, and it was a small-data program. It was
about 75,000 lines of code and had maybe 10,000 dictionary
entries and language-related agent descriptions. Yh was used
as the tail-end of an automatic programming system (called
PSI [21]) at the Stanford Artificial Intelligence Lab to describe
in English the programs produced (how they worked) and in
the mixed-initiative user dialog that gathered the specifica-
tions for the programs to be generated.

InkWell is different; it has these parts:

• WordNet synonym dictionary: 160,000 words [22] [23]
• 5,000 most common words
• CMU phonetic dictionary : 125,000 words [24]
• rhyming dictionary: 42,000 words
• stem dictionary: 163,000 entries (+ Porter Stemmer + Lem-

matization)

10

• n-grams: 30m from general literature; 100,000–1,000,000
per writer including the Google 2-grams [25] and the
COCA 3-, 4-, and 5-grams [26]

• ~30,000 lines of code: template compiler, constraint opti-
mizer, word & phrase adjustments, etc

• n-grams (including 1-grams) from a specified writer; cur-
rently there are around 50 writers to choose from (and
supplying new ones is trivial)

A naïve flow diagram is to the right [Figure 6].
t

A template resembles a Lisp program whose body looks like
text with parenthesized annotations. The template along with
all the specified constraints and parameters is compiled into
an evaluation function which returns 0 when all constraints
are satisfied. InkWell selects a set of candidate replacement
words and phrases, and an optimization process then selects
the combination of words and phases that best satisfy (mini-
mize) the evaluation function. The optimization process uses
simulated annealing—mostly because the optimization is over
discrete word choices and I haven’t been able to find a better
process. (One nice characteristic of simulated annealing is
that I don’t have to worry about staging the order of choices—
I can just add constraints and let the relatively undisciplined
SA process do its thing.) This produces (as many) revisions
(as the writer wants); the writer can pick and choose which
suggestions to use, and the template can be altered to do more
focused explorations.

For example, to evaluate how close a set of word choices
is to a specified personality profile, InkWell analyzes the
proposed text to (computationally) determine its exhibited
personality. This is then compared to the target, and either
the current text is considered a step in the right direction or
a step in the wrong direction. Because the analyzed texts are
generally pretty short, the LIWC dictionary needed to be ex-
panded, which was done algorithmically using the WordNet
synonym dictionary, a decay function, and semantic categories
derived from the LIWC categories—this expanded the LIWC
dictionary from about 2,300 words to about 25,000 words—
this is now the dictionary my group uses. The computation
of personality scores needs to be fast, which is accomplished
by pre-computing as much of the LIWC categories as pos-
sible and using caches.

t

Let’s look at some output. I’ll use the familiar Frost poem [15],
but we’ll look at only the last two stanzas. The Lisp [27] UI
(and yes, I know the UI is ugly and horrible) for InkWell is
shown in the Appendix. So is the original poem. Here are
the original last two stanzas:

He gives his harness bells a shake
To ask if there is some mistake.
The only other sound is the sweep
Of easy wind and downy flake.

The woods are lovely, dark, and deep.
But I have promises to keep
And miles to go before I sleep,
And miles to go before I sleep.

The first revision specifies conservative synonym search
(don’t traverse far from the originally specified words), and
InkWell is instructed to prefer word choices that Ernest
Hemingway [28] used in his short stories as well as short
words. Here is that result (changes from original underlined):

He gives his harness bells a shake
To ask if there is some mistake.
The only other sound is the brush
Of comfortable wind and small snowflake.

The forest is lovely, off, and abundant.
But I have promises to keep
And miles to go before I sleep,
And miles to go before I sleep.

The second variant specifies wild synonym search (go far
and wide), and Walt Whitman [29] is the writer to sound like
(& use short words):

He gives his work values a run
To say if there is some misconception.
The only other being is the brush
Of simple appearance and new person.

The lands are divine, certain, and low.
But I have loves to keep
And runs to go before I go,
And runs to go before I undergo.

Figure 6

template
with constraints

compiled
evaluation
function

optimization

revisions

11

The last example of these stanzas is my favorite. It’s like the
Whitman one except I’ve asked InkWell to sound a little like a
very theoretical and a bit controversial computer scientist [30]:

He gives his direction presentations a can
To hold if there is some misconception.
The only other element is the exit
Of informal termination and yielding person.

The developments are satisfying, insensitive, and extended.
But I have complexities to terminate
And amounts to go before I separate,
And amounts to go before I admit.

In addition, InkWell was instructed to prefer long words.
Looking at the template in the Appendix, you can see some
interesting things—things that are specified as soft constraints:

• InkWell tries to match the currently loaded writer’s Big Five
personality traits; for the last example this is the computer
scientist; call this the “target writer”

• the target writer’s word choices and n-grams are matched
• InkWell is told to make as many chosen words echo as pos-

sible; two words echo when the share word sounds—this
is derived from the CMU Phonetic dictionary

• InkWell tries to make all the words it chooses different
from each other

• for the examples that target Hemingway and Whitman,
InkWell is asked to prefer short words; this is in terms of syl-
lable count, as derived from the CMU Phonetic dictionary

• the bind statements are like Lisp’s let; they bind variables
to a word-choice specifications, and all occurrences of the
same variable in the body of the text will be replaced by
the same word; e.g., w2 always refers to the same word or
phrase that means “snow”

• variable words are called out; they are annotated with their
parts of speech (including semantic category, if known (e.g.
verb-cognition)) and other constraints

• many of the constraints are easily understood; for example
this expression (ref w2 :different w1 :rhyme w1) means the
word selected to mean “snow” should be different from the
word selected to mean “know,” and that those two words
should rhyme; the expression (ref w3 :echo w1) means that
the word selected to mean “queer,” “odd,” or “unusual”
should echo the word selected to mean “snow”; the expres-
sion (mile noun-quantity pl) means the word chosen to mean

“mile” should be a noun in the semantic category “quantity,”
and that when that word is expressed in the final output, it
should be made plural

• others are not so clear; the expression (sleep verb :different
sleep :rhyme sleep) means that the word selected to mean

“sleep” here shouldn’t be the same as the word selected in
response to the binding for sleep (the last word of the pre-
vious line), but should rhyme with it; the expression (wood

noun-plant pl :+sense [forest] :-sense [wood]) means that
the word chosen to mean “wood” should be in the semantic
category “plant,” should be made plural, should be of the
same sense as the word “forest” and not the same sense as

“wood,” (the material trees are made of)—this is achieved by
starting at the word “forest” and spreading out, increasing
the strength of each word encountered by an amount that
decays toward 0 with distance (the amount starts positive
for :+sense words and negative for :-sense words)

• predicates can be specified for each word, and a pervasive
predicate is one that applies to all of them; the predicate
syllable-bonus-few indicates a preference for short words

The n-grams are used to try to maintain some degree of
familiarity and sense.

t

What did I start with if I didn’t start with hard requirements
or a spec? I had had a ten-year hobby of using simulated an-
nealing to solve puzzles and do conference room scheduling.
I had developed several SA frameworks, and it was fun and
productive. As a writer I had a sense that I balanced a lot of
concerns while writing, especially poetry. I felt that these
concerns were not structured and that I didn’t consider them
in a particular order.

I started with the idea that I could represent a paragraph
as a sequence of boxes containing words, phrases, and other
things, that each box could have an associated set of alterna-
tives, that I could represent the concerns as numerically mea-
surable features viewed as soft constraints, and that SA would
be able to do its magic to balance all those concerns to select
the best alternatives. My first constraints were the Big Five
personality measurements, the n-grams, and the proximity
of synonyms to original words. All the other constraints in
InkWell fell out of trying to think of how to measure numeri-
cally the strength of a (possible) craft element—how much do
these two words rhyme, does this word better match a given
semantic sense, is this word more like what a particular writer
would use. Experience with InkWell guided me, and I’d say
it led me by the nose.

t

Kasparov laments our turning away from mystery and focus-
ing on puzzles. He doesn’t put it exactly that way:

This is our last chess metaphor, then—a metaphor for
how we have discarded innovation and creativity in ex-
change for a steady supply of marketable products. The
dreams of creating an artificial intelligence that would
engage in an ancient game symbolic of human thought
have been abandoned. Instead, every year we have new
chess programs, and new versions of old ones, that are
all based on the same basic programming concepts for

12

• 120 (static) calls to a function that determines whether
triples of words are known 3-grams

• 5 (static) calls to the LIWC / Big Five personality compu-
tation

This function is run in the inner loop of the optimization
process. The template specification in the Appendix runs it a
million times. That means that the function that determines
whether a pair of words in the revised text is in the Google
2-grams set is called 126,000,000 times.

An example of the way the evaluation function works is
rhyming. Suppose a template specifies that the words se-
lected for the variable words v1 and v2 should rhyme. When
two actual words, w1 and w2, are chosen, they are passed to
a function (120 lines of Lisp code including subfunctions)
that computes a rhyming score, 0≤r≤1, for them, based on an
algorithm for rhyming. Roughly, that algorithm looks at all
phonetic spellings of w1 and w2 in pairs, starts at the ends of
each pair, and computes how much each syllable rhymes along
with how many syllables rhyme. The maximum rhyme score
for all pairs is chosen for r and then “flipped” (1-r) so that
a perfect rhyme yields 0. All the soft constraints are treated
this way. All such evaluations are summed, and the overall
evaluation function is minimized over all word choices. This
approach enables InkWell to select these three delightfully
unexpected words as rhymes at the end of the Frost poem:
gulp, hole up, and nap.

To make this run fast enough to be usable, there are mul-
tiple layers of caches that memoize these function calls and
parts of them.

I could probably figure out how to make a more compact
evaluation function for my needs—perhaps by finding other
ways to compute the constraints or their equivalents. But
the combination of straightforward computation and lots of
caches makes experiments easy even if the code is complicated.

Given this, I was able to do some interesting investigations
that might not have been possible were things more stream-
lined. For example, after I stumbled across the CMU Pho-
netic Dictionary [24] and came up with the rhyme-strength
algorithm, I was able to approach the poetic concept called

“echoes.” Before this discovery I had no realistic approach for
how to measure it. Later I will be able to analyze rhythm be-
cause the phonetic dictionary scores stress levels for syllables.

The words selected need to be fleshed out for output. For
example, recall that the word for “mile” needs to be turned
into a plural. Moreover, the WordNet synonym dictionary
contains phrases as well as words. Handling the details for
all these adjustments takes a pile of algorithms, many tables,
and complicated special cases. The code for this part of the
system is 1000 lines right now, and I generally add to it / re-
vise it with every other new template I try.

t

picking a move by searching through millions of pos-
sibilities that were developed in the 1960s and 1970s.

–Garry Kasparov [17]

Does this also say that in turning away from creativity /
mystery we have turned to puzzles? Turned to providing im-
mediate value to firms? Kasparov goes on:

Like so much else in our technology-rich and inno-
vation-poor modern world, chess computing has fallen
prey to incrementalism and the demands of the mar-
ket. Brute-force programs play the best chess, so why
bother with anything else? Why waste time and money
experimenting with new and innovative ideas when we
already know what works? Such thinking should hor-
rify anyone worthy of the name of scientist, but it seems,
tragically, to be the norm. Our best minds have gone
into financial engineering instead of real engineering,
with catastrophic results for both sectors.

–Garry Kasparov [17]

Whenever I add a new constraint type to InkWell I have to
go through a period of getting re-acquainted with it. InkWell
operates in a very complicated space of constraints, and find-
ing the good spots takes time. After revising InkWell, I must
revisit all my personal heuristics about how to write templates
to get it to be creative, cautious, wild, or conservative. It’s a
pleasurable re-familiarization—kind of like getting to know
a new lover: things roughly work the same, but all the details
and nuances are fresh and exciting. I typically allocate a few
days to do this, and I often send off some of the results to my
poet friends for their amusement.

t

InkWell is in Common Lisp. I write in Common Lisp because
I know it well, know how to do crazy things with it, and it
flows from my fingers rapidly. InkWell is complex: maybe half
a dozen compilers (two very substantial), the optimization
infrastructure and InkWell manifestation of it, the synonym
machinery, the constraint computation machinery, the paral-
lelization to make the synonym discovery and optimization
run acceptably fast, the numerous caches to make things
run fast enough to be tolerable (even with the parallel stuff).

For example, the template shown in the Appendix for the
Frost poem compiles to a Lisp function 1952 lines long. This
function is composed of the following:

• 16 (static) calls to the rhyming predicate
• a (static) call to a function that measures how echo-y a set

of 44 words are
• a (static) call to a function that measures how diverse the

same set of 44 words are
• 126 (static) calls to a function that determines whether

pairs of words are known 2-grams

13

My methods of exploring how to get a program to choose
words and phrases varied over time depending what my col-
laborator, InkWell, was teaching me. I always would stick with
the basics of the scientific method, but I would chase hunches,
build unlikely infrastructures to explore what seemed like
dead ends, and generally would use the heuristic of looking
intently, from time to time, at the least likely idea.

InkWell itself—as well as my old NLG program Yh—does
the same thing with respect to abandoning common sense.
In InkWell, simulated annealing works (well) because it
will occasionally / randomishly choose to make changes to
the state of affairs that make things worse. This is likely the
reason it’s so good at finding unusual rhymes. In Yh I used
a technique I called counterinduction after the philosophi-
cal concept of the same name [31]. The idea was that when
planning progress is advancing slowly or not at all, Yh would
allocate a lot of resources to explore less likely approaches.
Kind of like a chess program that can do heuristic estimates
of potential next moves choosing to explore to some depth
the consequences of making a move the heuristics don’t like.

Here is how the biologist Kim Lewis puts it:

This is part of what I teach my students—how to shut
down your common sense…. You have to start looking
for a perfect solution and ignore whether it’s realistic.
That mindset helps you battle your ‘common sense,’
which is what prevents you from inventing new things.

–Kim Lewis[32]

t

“Gabriel, you loser…we have a word for this in agile—it’s
called a spike.”

Sometimes a user story is generated that cannot be
estimated until the development team does some actual
work to resolve a technical question or a design problem.
The solution is to create a “spike,” which is a story whose
purpose is to provide the answer or solution. Like any
other story or task, the spike is then given an estimate
and included in the sprint backlog.

–http://www.solutionsiq.com/resources/glossary/bid/56550/
Spike [33]

It’s funny how when I talked about this with audiences in
the past and got the “you loser” comment, I couldn’t really
answer the criticism. The answer is in the above quote but
only today while writing this text did I realize it. “…Resolve
a technical question or a design problem.”

A spike solution, or spike, is a technical investiga-
tion. It’s a small experiment to research the answer to
a problem. For example, a programmer might not know

whether Java throws an exception on arithmetic over-
flow. A quick ten-minute spike will answer the question.

– Shore & Warden, The Art of Agile Development [34]

Agile is aimed at assisting a business guy create business
value right away. The developers are not interested in figur-
ing out what that business value is, but simply wish to hear
it told to them.

At that 2001 meeting in Snowbird where we wrote the
Agile Manifesto, Kent Beck stated one of our goals: “…
to heal the divide between development and business.”

–Robert Martin, The True Corruption of Agile [35]

My goal is to resolve a mystery, but it’s not a technical ques-
tion about how to design or code InkWell—though I have
plenty of those—it’s a mystery about what makes for creative
and artistic natural language generation. Spikes are detours
developers take to figure out things about the programs they
are writing; they are not detours to figure out what business
values to pursue. Confusing spikes and Naur’s theory build-
ing for what I am up to is the same mistake twice.

t

“Alright friends, you have seen the heavy groups, now
you will see morning maniac music. Believe me, yeah.
It’s a new dawn. Good morning, people!”

–Grace Slick, Jefferson Airplane, Woodstock, August 16, 1969.

We arrive at the crux. What is programming? It’s easy to be
confused—by things like this for example:

A software development methodology or system de-
velopment methodology in software engineering is a
framework that is used to structure, plan, and control
the process of developing an information system.

–http://en.wikipedia.org/wiki/Software_development_
methodology [36]

Software development involves programming, but software
development isn’t programming. Methodologies are about
appropriate ways to develop software in an engineering-re-
lated context. For military purposes and for safety-critical
purposes, it’s essential to not make a mistake, and the way
to do that is lots of conceptual planning near the beginning
to be certain nothing can go wrong. This leads to the heavy
methodologies.

In business contexts the high-order bit is to get working
software fast, and there is a premium for helping firms catch
up quickly to competitors, veer ahead with a new (but typi-
cally incremental) product, or respond to sudden changes of
direction the customer might throw into the hopper. But as

14

with the military contexts, the endgame is a software-related
artifact in the domain’s real world doing things that some-
one needs or wants.

There are other contexts. One is science—but a particular
type of science. It’s not science where data gathered from in-
struments is analyzed. It’s when the software and its program-
ming form a machine to explore nature alongside the scientist.
It could be a simulation that helps the scientist understand
what’s going on, or it could be like InkWell which is trying
to create an artificial model of what writerly creativity is.

Another, similar, context is learning about a topic through
programming it up. For example, my ability to understand
lots of technical things is limited, and so I program them
up myself to see how the mechanisms lock together to make
it happen.

Another is to explore what a question that’s easy to ask
might actually mean. For example, as part of the InkWell
project I am exploring what “rhyminess” could mean. In
writer circles a particular writer might be considered more
(or less) musical than another; what does that mean? My first
answer was that it is the percentage of words in a text that
rhyme. I programmed that up and found the idea doesn’t
take into account a text that is extremely rhymey in a couple
of isolated places and otherwise flat.

My next idea was to take a window about 100 words wide
and pass that over a writer’s corpus skipping ahead 50 words
at a time (that is, overlapping the windows), computing the
percentage of words that rhyme in each 100-word group, and
reporting the average of those percentages. This resulted in
scientists and nonfiction writers being very rhymey because
there would be knots of high-rhyme bundles, usually because
lots of technical words rhyme for no tasteful reason.

 I noticed that people considered rhymey had narrower
standard deviations than flat writers for the set of rhyminess
windows. So I tried a formula where a writer’s rhyminess is
the average rhyminess minus twice the standard deviation.
The results are pretty intuitive, but I think there is a stron-
ger notion of periodicity at work that needs to be considered.
(There are some rhyminess scores in the Appendix.)

The reason I told this rhyminess story was to demonstrate
that the questions being explored with software this way are
not strictly about analyzing data (like creating a simple word
usage model of a writer) nor how to achieve the requirements
of the program (how to implement a theory of rhyminess),
but what a concept might mean.

t

It might seem that the programming stories I told are just a
set of projects I worked on—extending the LIWC diction-
ary, programming up a literary genre detector, algorithmic
rhyming, exploring the concept of rhyminess, and tailoring
texts using optimization—but they are just waypoints on a

single journey to discover how natural language generation
can be done and what creativity means in writing. InkWell
and all its inner stuff is the machine I lug around with me as
I explore this space. It’s my learning machine.

I program to explore.
t

If you learned something from this essay I would be very
disappointed. I’ve simply pointed out that programming is
not software engineering, and because of that, the principles
and practices of the heavy methodologies and agile are too
limiting and even irrelevant. Programming is like writing in
that sense. You can write a 5-paragraph theme for homework,
you can write a requirements document for your division,
you can write a marketing piece for your product manager,
you can take effective writing courses. Or you can do this:

“I write entirely to find out what I’m thinking, what
I’m looking at, what I see and what it means. What I
want and what I fear.”

–Joan Didion, Why I Write [37]

Or this:

You may wonder where plot is in all this. The answer…
is nowhere…. I believe plotting and the spontaneity of
real creation aren’t compatible…. I want you to under-
stand that my basic belief about the making of stories
is that they pretty much make themselves. The job of
the writer is to give them a place to grow.

–Stephen King, On Writing [38]

Or this

But during my very early writing, certainly before I’d
published, I began to learn characters will come alive if
you back the fuck off. It was exciting, and even a little
terrifying. If you allow them to do what they’re going
to do, think and feel what they’re going to think and
feel, things start to happen on their own. It’s a beautiful
and exciting alchemy. And all these years later, that’s
the thrill I write to get: to feel things start to happen
on their own.

So I’ve learned over the years to free-fall into what’s
happening. What happens then is, you start writing
something you don’t even really want to write about.
Things start to happen under your pencil that you don’t
want to happen, or don’t understand. But that’s when
the work starts to have a beating heart.

–Andre Dubus III, By Heart [39]

That’s why I wrote this essay—to find out.

15

Appendix: Code Examples & Stuff

(with-personality-traits (*writer-big-five*)
 (with-global-constraints ((all-echo)(all-different))
 (with-pervasive-predicates (#’syllable-bonus-few)
 (bind ((w1 (know verb-cognitive)) (w2 (snow noun-substance)) (w3 (or (queer adj) (odd adj) (unusual adj)))
 (w4 (or (year noun-quantity) (week noun-quantity) (month noun-quantity) (season noun-quantity)))
 (w5 (shake verb)) (w6 (flake noun)) (here (here adj)) (near (near adj))
 (mile (mile noun-quantity pl)) (sleep (sleep verb))
 (woods (wood noun-plant pl :+sense [forest] :-sense [wood])))

“Whose (ref woods) these are I (think verb-cognition) I (ref w1).
His (house noun) is in the (village noun) though;
He will not see me (stop verb gerund) (ref here :rhyme near)
To (watch verb-perception) his (ref woods) (fill verb) up with (ref w2 :different w1 :rhyme w1).

My (little adj) (horse noun-animal) must (think verb-cognition) it (ref w3 :echo w1)
To (stop verb) without a (farmhouse noun) (binding near :rhyme w3)
Between the (ref woods) and (frozen adj) (lake noun)
The (darkest adj) (evening noun) of the (ref w4 :different w3 :rhyme w3).

He gives his (harness noun) (bell noun pl) a (ref w5 :echo w3)
To (ask verb) if there is some (mistake noun :rhyme w5).
The only other (sound noun) is the (sweep verb)
Of (easy adj) (wind noun) and (downy adj) (ref w6 :different w5 :rhyme w5).

The (ref woods) are (lovely adj), (dark adj), and (deep adj).
But I have (promise noun pl) to (keep verb :rhyme sleep)
And (ref mile) to go before I (ref sleep),
And (ref mile) to go before I (sleep verb :different sleep :rhyme sleep).”))))

Stopping by Woods on a Snowy Evening

Whose woods these are I think I know.
His house is in the village though;
He will not see me stopping here
To watch his woods fill up with snow.

My little horse must think it queer
To stop without a farmhouse near
Between the woods and frozen lake
The darkest evening of the year.

He gives his harness bells a shake
To ask if there is some mistake.
The only other sound’s the sweep
Of easy wind and downy flake.

The woods are lovely, dark and deep.
But I have promises to keep,
And miles to go before I sleep,
And miles to go before I sleep.

Acknowledgments

Some of this work was supported by DARPA (W911NF-12-C-0028).

©rpg

16

Figure A1

17

Rhyminess Scores

Writer / Piece Rhyme
Score

Average
Rhyminess

Max
Rhyminess

Min
Rhyminess

Standard
Deviation

Mark Twain: The Adventures of Huckleberry Finn 53.12 61.30 73.45 47.37 4.09
King James Bible 52.65 62.46 94.68 42.11 4.90
Ernest Hemingway Stories 51.56 60.58 75.38 40.20 4.51
Franz Kafka: The Metamorphosis 51.42 58.57 68.70 48.53 3.58
Alfred, Lord Tennyson, : In Memoriam A. H. H. 51.36 59.00 71.30 47.97 3.82
Robert Frost: poems 51.30 59.50 73.74 44.44 4.10
Lewis Carroll: Through the Looking Glass 50.92 58.55 70.59 48.00 3.82
Bible: New International Version 50.65 60.05 87.67 35.71 4.70
William Faulkner Stories 50.31 59.78 77.69 42.86 4.74
Richard Gabriel: Traditional Salvation (novel) 50.16 58.60 72.7 44.03 4.22

••• (35 entries)
Harper (technical) [30] 42.06 54.27 89.71 26.60 6.10

••• (3 entries)

Upright twitcher is not low paid. [40]

18

Aphorisms for Science Programmers
Aphorism: Create opportunities for change.

If you want something new, invite change—don’t wait. Change
is how to explore; exploring is how to discover. If you require
a master to instruct change, you have no opportunities for
discovery.

t
Aphorism: Engage continuously with your software.

Software is the machine that connects you to the realm you’re
exploring; thinking is fine, but seeing is more important.

t
Aphorism: Code and scientists must work together.

Software will tell you when it is the wrong instrument. If it is
silent, suspect it. Don’t accept working software—keep push-
ing it, keep changing it until an insight drops out.

t
Aphorism: The first thought that comes to mind is almost
certainly a cliché.

I learned that in writing school. For research, this can mean
that the first thing you think to try for your program could be
way off base, even if it seems to be working well. Remember:
projects given to you are mere puzzles, worthy of a homework
problem, not a mystery that can give rise to science

When working with software as part of doing science, avoid
working on puzzles unless they are part of the ugly innards
of the program. Lots of good algorithm design can come
from puzzles, but there is a difference between the reaction
that something is clever and that something is amazing. In a
sense, puzzles are engineering problems, and when the puzzle
is large enough, it can become a mystery and the outcome—if
reached—is likely science. Not guaranteed; but likely.

t
Aphorism: There can be no interaction or collaboration
unless you engage with the mystery your software reveals.

 If you turn away, the mystery flees; stare back / don’t blink.
Mysteries make us uncomfortable.

t
Aphorism: If you understand exactly what your code does,
it’s taught you nothing…it’s reflecting you, not nature.

When you feel comfortable with it and turn your back, it
just laughs and laughs. If you can’t figure something out, use
mystery (or machine learning).

t

Aphorism: If your effort is sustainable, you aren’t learn-
ing anything.

You have to push yourself or you are not only expending
sustainable effort but you are sticking close to what you (and
everyone else) know. In the old days, scientists pulled all-
nighters—for weeks on end. This is not sustainable. Surprise
pushes you and you respond with passion; passion means you
can’t stop; not stopping is not sustainable. Don’t do what is
sustainable—make it so you’re surprised. But don’t explore
yourself into an early grave.

t
Aphorism: Technical excellence and good design are for
engineers.

Pay attention to technical excellence, and mystery slips away—
and with it nature and science.

This is not as wrongheaded as it sounds. There are pro-
grammers who design and build quite well without expending
a lot of planning and engineering effort. Consider compos-
ers. One would expect that someone well-trained and well-
practiced at writing music, performing music, and thinking
about music would be more likely to produce a good song in
a single day than could a randomly selected person. This is
what talent means:

the skill to do something that is hard
–rpg

A great researcher who is also a great programmer can
focus on the exploration and not the details of making the
instruments and sensors. Such a one can pay attention to the
insights coming into view and explore diversions, which is
where insights and science might be. Engineering is for pro-
ducing reliable things, and that takes a lot of special knowl-
edge and skill, and also a lot of historical information to be
able to know what the problems will be and which puzzles
must be solved in each particular case. This is indeed hard,
and it’s what the heavy methodologies and agile are designed
to facilitate. Waterfall and Scrum are the midwives of engi-
neered artifacts.

Engineered artifacts aren’t science.
t

Aphorism: Simplicity is beside the point. Nothing is wrong
with simplicity...................later.

19

References

[1] Kevlin Henney, 97 Things Every Programmer Should
Know: Collective Wisdom from the Experts. O’Reilly Me-
dia, 2010.

[2] Naur, P., “Programming as Theory Building,” In: Micro-
processing and Microprogramming, Vol. 15, pp. 253–261,
1985.

[3] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
Shriram Krishnamurthi, How to Design Programs: An
Introduction to Programming and Computing. The MIT
Press, 2001.

[4] Jeff Sutherland and Ken Schwaber, “A Brief Introduction
to Scrum.” The Scrum Papers: Nuts, Bolts, and Origins
of an Agile Process. http://assets.scrumfoundation.com/
downloads/2/scrumpapers.pdf?1285932052, 2007.

[5] Steve McConnell, http://www.stevemcconnell.com/articles/

art04.htm, 1996.
[6] http://agilemanifesto.org/principles.html

[7] Galenson, David W. Old Masters and Young Geniuses:
The Two Lifecycles of Artistic Creativity. Princeton Uni-
versity Press. Princeton, NJ, 2007.

[8] http://en.wikipedia.org/wiki/Les_Demoiselles_d%27Avignon

[9] Edward J. v. K. Menge, The Quarterly Review of Biol-
ogy, 1930.

[10] John, O. P., & Srivastava, S. “The Big-Five trait taxonomy:
History, measurement, and theoretical perspectives.” L.
A. Pervin & O. P. John (Eds.), Handbook of personality:
Theory and research, (Vol. 2, pp. 102–138). Guilford Press,
New York, 1999.

[11] http://en.wikipedia.org/wiki/Big_Five_personality_traits
[12] Yla R. Tausczik and James W. Pennebaker, “The Psy-

chological Meaning of Words: LIWC and Computerzed
Text Analysis Methods,” Journal of Language and Social
Psychology, 29(1) 24–54, 2010.

[13] Tal Yarkoni, “Personality in 100,000 Words: A large-
scale analysis of personality and word use among blog-
gers.” Journal of Research in Personality, 44(3): 363–373,
June 2010.

[14] Kent Beck, Extreme Programming Explained: Embracing
Change. Addison-Wesley, 2000.

[15] Frost, Robert, New Hampshire. Henry Holt. New York.
1923.

[16] Andrew Pickering, The Mangle of Practice: Time, Agency,
and Science. The University of Chicago Press, 1995.

[17] Garry Kasparov, “The Chess Master and the Computer.”
The New York Review of Books, February 11, 2010.

[18] Schwartz, S. H., “Basic human values: theory, measure-
ment, and applications.” Revue Française de Sociologie,
47(4), 2006.

[19] Jilin Chen, Gary Hsieh, Jalal Mahmud, Jeffrey Nichols.
“Understanding Individual’s Personal Values from Social
Media Word Use.” Proceedings of CSCW 2014, Baltimore,
MD, February 15–19, 2014.

[20] Gabriel, Richard P., “An Organization for Programs in
Fluid Domains.” STAN-CS-81-856, AIM-342, Stanford
University, 1981.

[21] Green, Cordell, “A Summary of the PSI Program Synthe-
sis System.” Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, Cambridge, Mas-
sachusetts, August 1977.

[22] George A. Miller (1995). “WordNet: A Lexical Database
for English.” Communications of the ACM Vol. 38, No.
11: 39–41.

[23] Christiane Fellbaum (1998, ed.) WordNet: An Electronic
Lexical Database. Cambridge, MA: MIT Press.

[24] http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[25] http://storage.googleapis.com/books/ngrams/books/datasetsv2.

html

[26] Corpus of Contemporary American English, http://www.

ngrams.info/download_coca.asp

[27] http://www.lispworks.com/.

[28] Ernest Hemingway, The Complete Short Stories of Ernest
Hemingway. Scribner, 1998.

[29] Walt Whitman, Leaves of Grass. 1855.
[30] Robert Harper, Practical Foundations for Programming

Languages, Carnegie Mellon University, Spring, 2010.
[31] Feyerabend, Paul. Against Method. 4th ed., New York,

NY: Verso Books, 2010.
[32] Kim Lewis, http://www.northeastern.edu/magazine/it-takes-

more-than-a-brilliant-scientific-mind-to-make-a-major-break-

through/

[33] http://www.solutionsiq.com/resources/glossary/bid/56550/Spike

[34] James Shore & Shane Warden, The Art of Agile Develop-
ment. O’Reilly Media, November 2, 2007.

[35] Robert Martin, “The True Corruption of Agile,” http://

blog.8thlight.com/uncle-bob/2014/03/28/The-Corruption-of-

Agile.html.
[36] http://en.wikipedia.org/wiki/Software_development_method-

ology

[37] Joan Didion, “Why I Write.” New York Times Book Re-
view, December 5, 1976.

[38] King, S., On Writing, Pocket, New York, 2002.
[39] Joe Fassler, “The Case for Writing a Story Before Know-

ing How It Ends.” The Atlantic, Oct 8 2013.
[40] Federico Garcia Lorca, “Only mystery makes us live.

Only Mystery,” caption on sketch.

