
1

Abstract

Unfortunately, most existing programming lan-
guages treat software as an isolated, closed-world
formal system.

–ULS Report, page 89

When we—as people—inhabit the physical world, the
laws of physics, chemistry, biology, sociology, and even of
governments help us by providing constraints against which
our actions can gain leverage to get things done. Software
obeys few laws—computability is an important limitation,
but it sets only a fairly abstract bar for feasibility. Types
provide other laws, but so far they have not enabled the
breakthroughs in programming language design we need
to be able to construct reliable, resilient ultra large scale
systems.

Physical laws: to gain similar advantages for software, I
believe we need to construct virtual worlds that render laws
real. I believe we need constraints that otherwise would be
matters of choice, imagination, and standardization. With
a virtual world, more stuff is “real,” and I hope/expect that
therefore the problems I see that are associated with abstrac-
tion and scale will be reduced. Further, with survival and
health manifest, I expect it will be easier to write resilient
and self-sustaining software.

Introduction

The following is from the SEI report on Ultra Large Scale
systems [0]:

Current foundational models treat software as
abstract, isolated, closed-world, mathematical pro-
grams. But real software does not fit this idealiza-
tion at all—instead it is a concrete intentional ar-
tifact that is richly embedded into an environment
of physical and intentional artifacts.

The prevailing idealization treats semantics of
programs as an inward gazing exploration of what
the program might mean to the compiler. But many
important semantic relationships in software pro-

Richard P. Gabriel
(Failed Proposal: big, colorful—but a sad color—corporation)

rpg@dreamsongs.com

Exploratory Research Proposal
Virtual-world-inspired Programming Language Design

foundly cross the program/non-program boundary.
Identifiers in the code refer to entities outside the
code. Intentional artifacts other than code form part
of the overall software ecosystem and have seman-
tic references to and from the code (configuration
files, build scripts, bug databases, email archives
of design discussions, etc.).

The idealization treats software as being ab-
stract—but of course it is not. The computation is
a physical process, running on real computers over
real networks. The software is encoded physically,
and has classic properties of physical systems, in-
cluding the fact that its size affects aspects of vi-
ability and behavior such as scalability, distribu-
tion, latency etc.

—ULS Report Early Draft

The purpose of abstraction in programming languages is
to isolate the programmer from the reality of the underly-
ing programming language and hardware, where the only
real things are bits stored in bytes and words in computer
memory. These fabrications are raised up to be numbers
of different types, strings, and maybe vectors and arrays—
and some other things like this, perhaps some simply struc-
tured collections. The problem of programming is to take
real-world concepts and constructs, and map those ideas to
these computerish realities. The downside of abstraction is
that when a program is thoroughly abstracted—made up of
abstractions for all the concepts and things the programmer
needs to handle—the web of abstractions depends on their
interfaces to a degree that makes it hard to change one or a
few. That is, unless the abstractions are perfect, it is likely
some will need revision at the interface level, and without
very good tool support this can be difficult, and further er-
rors can be introduced.

Moreover, in a huge system, there can be so many ab-
stractions—each like a little language, sometimes a mi-
crolanguage but sometimes substantial—designers and
developers can become overwhelmed by all the little lan-
guages to learn and master. In small systems, the learning
is easy or at least the benefits outweigh the costs. But in a

2

huge system, the burden of learning can be too much and
flaws can accrue.

Here is what Paul Feyerabend says about Ernst Mach,
scientist and philosopher:

We have seen that abstraction, according to Mach,
“plays an important role in the discovery of knowl-
edge.” Abstraction seems to be a negative procedure:
real physical properties . . . are omitted. Abstrac-
tion, as interpreted by Mach, is therefore “a bold
intellectual move.” It can misfire, it “is justified by
success.”

–Feyerabend, Farewell to Reason [6]

Other conceptualization of ultra-scale systems have tried
to address these problems, most notably the “systems of sys-
tems” work. This endeavor, which has evolved over the past
10 or so years, is largely based on the assumption that the
components of a system (of systems) are themselves systems,
and therefore there is a mostly hierarchical decomposition
of the “problem”—and this is not surprising because much
of the progress we’ve made in constructing ever-larger soft-
ware systems has depended on such decompositions. Again,
though, this solution to complexity at scale—as in the case
of abstraction—relies on concepts from within the frame-
work of a purely abstract endeavor.

In most cases, the real world makes its appearance in soft-
ware through the mediation of software developers, who are
not usually experts at this—even though they are masters
of abstraction, they are not masters of science nor of the do-
main for which they are writing software. Therefore, their
abstractions tend to be a bit inept and eventually need to be
revised. This makes for unstable code, and sometimes the
need for adapters or impedance matchers to get the parts of
the system (of different systems) working together. When
the “same” real-world object or concept is abstracted by dif-
ferent software developers (in vastly different contexts), it is
typical for there to be a mismatch, requiring programming
and other adaptive measures to be taken.

One current approach to this problem—and an approach
with a lot of energy and effort behind it—is to produce on-
tologies that describe the world which software developers
can rely on, at least in a single project. An ontology is de-
fined this way by Tom Gruber:

An ontology is an explicit specification of a concep-
tualization. The term is borrowed from philosophy,
where an Ontology is a systematic account of Exis-
tence. For AI systems, what ‘exists’ is that which can
be represented.… [A]n ontology is a specification
used for making ontological commitments.… Practi-
cally, an ontological commitment is an agreement to
use a vocabulary (i.e., ask queries and make asser-
tions) in a way that is consistent (but not complete)

with respect to the theory specified by an ontology.
We build agents that commit to ontologies. We de-
sign ontologies so we can share knowledge with and
among these agents. [7]

Ontologies, again, operate within the realm of abstrac-
tion and conceptualization. Its elements are symbols and
formalisms, and their interactions are linguistic. The real
world speaks to us, as well, but with knocks and bumps,
and with the need to eat and rest, and with the challenge
to learn and adapt (as individuals and as a set of living or-
ganism) followed by death.

Beyond the (controversial idea of) problems with abstrac-
tion are the problems associated with keeping a software
system running well. Lately developers have started to take
seriously these problems by programming in additional
mechanisms to care for the running software. I suppose you
could look at garbage collection as a health-related mecha-
nism. But the mechanisms being used today represent a
narrow range of what I believe are the viable possibilities for
true self-sustainability. For example, biological ideas have
not been particularly exploited to build software systems.

Next, I believe there is a need for more programming
paradigms and constructs. We seem to have run out of
usefully different ideas based on the textual metaphor: the
metaphor that the program is the text on the page, and that
people and programs need to be able to reason about textual
pages of source code.

Finally is this observation: although it doesn’t seem like
it, the constraints placed on what we can do and build by
the laws of physics, biology, chemistry, and other disciplines
concerned with the real (physical) world help us with the
doing and the building. Gravity, for example, enables us to
move, to build some things by merely piling, helps us orga-
nize our lives by keeping things in place, makes friction an
interesting phenomenon, and probably was necessary for
the creation of life itself.

<diversion>

In the early days of pre-statistical artificial intelligence re-
search (I’m talking about the 1970s), there were a series of
planning problems that were proposed to exercise research
in (robot) planning, involving what was called the “blocks
world.” The blocks world was a sort of simulation of the
real world that enabled researchers to perform experiments
and do research without having to construct working (and
possibly easily breakable) robots—which were beyond their
capabilities at the time anyway.

3

The blocks world was a purely symbolic representation,
with statements (in Lisp) like these to indicate the configu-
ration of blocks:

((a on b)(b on c))

Which is taken to mean that the block named a is on
the block named b, and b is on c, which forms a tower. The
problem is always to take a starting configuration of blocks,
an ending configuration, and a one-armed robot, and to
come up with a plan of block moves that would transform
the starting to the ending configuration. Simple, eh?

In the mid-1970s Gerry Sussman discovered a blocks
world problem that confounded many, and it has come to be
known as the Sussman Anomaly. Here is the problem. The
starting configuration is shown in Figure 1. The problem
is get A on B and B on C—that is a stack with these blocks
from top to bottom: A, B, C. The classic approach is to state
that the ending configuration is this:

((A on B)(B on C))

The classic planners would try to establish one or the other
of these goals first, and then the other. Trying to solve (B
on C) first results in the situation shown Figure 2, and at
that point (A on B) is not possible to achieve; and if the
planner tries to solve (A on B) first, the resulting situa-
tion is shown in Figure 3. This is because the planner can
try only the two orders, and there is no such thing as inter-
leaving steps. The technical problem as Sussman has named
it is “prerequisite clobbers sibling goal.” His planning sys-
tem—interestingly called “Hacker”—solves it by going into
an error-ignoring mode, which enables it to do an irrelevant
step first (moving C to the table). (And such a move might
remind us of simulated annealing where a step that makes
things worse overall might be permitted occasionally.)

The interesting thing about all this is something you (the
reader) have perhaps noticed. Although it’s not stated any-
where, the situation assumes that there is gravity, and that
the blocks all need to be supported. There is syntax for that
(the (x on y) statement), but it isn’t used to state all the
parts of the situation. Peter Norvig in Paradigms in Artifi-

cial Intelligence Programming codes up this problem, and
though he states the initial configuration like this:

((c on table)(a on table)(b on table)
(space on c)(space on b)
(space on table))

He doesn’t state the goal the same way—with explicit men-
tions of the table and open space—but as the 2-part expres-
sion I used: ((A on B) (B on C)). If he were to state
the goal like this:

((A on B)(B on C)(C on table))

a simple reordering of the goals would work with the code
he was demonstrating (the general problem solver or GPS
code). The failure is that even though some representations
of the problem/configuration recognize that there is gravity,
not all of them do. And these mistakes are being made by,
as a character in Raiders of the Lost Ark might have called
them, top men.

Instead, the AI planning researchers invented interleav-
ing planners and other sophisticated techniques to handle
this and other problems. One could argue that the goal stat-
eent ((A on B)(B on C)) makes room for lots of other
solutions (like putting C on D and making an even taller
stack), but the solver doesn’t know that for every block, x,
(x on <something>)or it will fall however far it needs to

to make it true (unless it’s in space).
My point is that what is easy for us to do is to work in a

world with physical and other reality-based requirements
and contraints, and we try to operate in a purely abstract
world (with ontologies, perhaps), but we aren’t disciplined

Figure 1

Figure 2

Figure 3

4

enough to do it well. Keeping it in our heads doesn’t seem
to work.

The Proposal

I want to create a virtual world/runtime—something like
Second Life—where software runs. It would be like a virtual
machine, but the stuff there—the software, what otherwise
would be abstract constructs, and other useful artifacts such
as business models—would be visible and as if physical. The
virtual world would have laws of physics, biology, sociol-
ogy, chemistry, and even computation that would together
govern the things there, the laws enforced and enacted by
simulation engines like the physics engines in some virtu-
al worlds including games. Software would run there as it
does now on a virtual machine, but the physical, biological,
and other aspects of the software under the purview of the
various simulation engines would obey the laws and suffer/
enjoy the constraints imposed on them. But like other online
virtual worlds, people can visit this world and observe the
entities there. Manipulating software would not be limited
to conceptual and textual tinkering.

The Purpose of the Virtual World

Unlike Second Life, the purpose of this virtual world is not
to be a place where people visit to socialize or even to be
the place where software developers do their work. It may
turn out to be a good place to develop code, but the pri-
mary purpose is to provide mechanisms, metaphors, and
insights that enable human designers to design better pro-
gramming languages.

At present most of our programming languages are sol-
idly based on mathematical foundations with some assis-
tance from abstractions designed by software architects
and developers to represent (small) parts of the real world
for a particular purpose. Types help with this by provid-
ing some help with making sure that the very limited con-
straints types place on the software’s text are kept to, but
these constraints are mostly if not entirely aimed at making
sure that the form of the software (as a text) is such that
certain programming errors are avoided (early).

The problem with our current languages—speaking in
generalities—is that the solid facts upon which they depend
are limited and inflexible, requiring invented superstruc-
tures to bring the language closer to being directly usable.
It’s my hope and expectation that if the universe programs
exist in had some more constraints, behaviors, and laws that
the capabilities we could build into software could expand
to make developing software easier and quicker.

The idea is to move from the world of text to something
more like a real world. Our current languages and type
theories are designed to operate on source text (or a tree-
like representation of it), and it is important for people to

be able to reason about local attributes—because people
are not good at holding a lot of information in their heads.
It’s not a coincidence that it was in the context of languages
that represented types at runtime—in the execution envi-
ronment of programs—that advanced memory management
was developed. I hope to replicate this kind of language
success using runtime virtual worlds. I’ll have a bunch of
examples in the next section, but this is a good place for a
simple one.

Suppose that in the runtime virtual world (RVW), soft-
ware components that were constantly executing (and/or
had a lot of work in their queues) were, like kryptonite, to
glow cold green; the brighter the more overworked they
were. Other software components, wandering around the
RVW, could notice this and perhaps build a structure where
there were a number of copies of the component, and with
an input dispatcher and an output re-integrator around the
copies, thereby improving throughput.

The wandering software could be completely generic—
working with any system within a particular type of RVW.
The only (minimal) requirements on “real application code”
would be that the components that are manipulated pres-
ent a second interface that enables them to be rewired and
are able to make RVW expressions—the glowing cold green

—and other gestures like that that reflect inner state. Soft-
ware that is more in tune with the RVW will have capabili-
ties like those suggested in the next section.

Possible Capabilities

The following are possible avenues of exploration for the
idea of a runtime virtual world.

Physicality: Everything in the RVW is manifest: visible,
tangible, making sounds, giving off odors and other emana-
tions, and moveable including by self-propulsion. Actions
and conditions that are visible in the real world are visible
in the virtual one. For example, when a chunk of software
is manipulating a real-in-the-virtual-world “data structure,”
it will have a hold on it or will otherwise be apparently in
possession of it or tethered to it with a visible tether, and
other chunks of software waiting to use it will be visible—
perhaps standing in line or crowding around. Software that
wants to use the “data structure” can observe the queue and
decide to wait or go off and do something else or delegate to
a colleague the task of waiting for the structure and doing
whatever has to be done.

A software chunk will have a size and weight that de-
pends on how large and complex it is. Being able to “nail 2
things together” (compose software objects) will depend
on whether their underlying physical natures—and hence
logical natures—would make that meaningful. In fact, the

5

exploration of how to render physical what is now done tex-
tually will be a major area of exploration.

Vision and other senses: In the runtime virtual world
it’s possible to see things. People can see them, and, if pro-
grammed to, so can the chunks of software. (For now I don’t
want to commit to the units of software that will appear as
coherent entities. It would be tempting to call them com-
ponents, but that might eventually have the wrong conse-
quences or implications.)

Software that is transparent (see below)—like a house
with glass walls—can have its inner workings observed, so
other software can tell whether it is hard at work (perhaps in
a tight loop) or just wasting time waiting for something to do.
Perhaps by observing peculiar or atypical behavior, another
software chunk can report on the ill health of the first.

Software chunks will have a physical appearance regard-
less of how they are programmed. They might be encased in a
default physical shell with stereotypical physical properties,
and perhaps the default appearance will be ugly. This will
serve to encourage software development organization to
take some time to pay attention to this aspect, which could
have beneficial side-effects, such as making the software
system more flexible and reliable.

Vision is not the only sense available. Hearing, smell, and
touch could be as well. Touch might be only sensitive to
hardness, impenetrability, and some textures. Hearing is a
sense that carries a considerable distance but not as far as
sight can. Smell is a closer in sense, depending on the con-
centration of odor.

The use of senses provides the designer with other av-
enues of interaction and communication than the delivery
of “arguments” via function or procedure call, or message
passing. By using smells, for example, a software chunk
can indicate distress, a desire for assistance, or simply the
state of its computation. Sound can be used the same way,
with the main differences being the degree to which dis-
tinctions can be apprehended and, especially, the speed
and persistence of the signal. Vision depends on nearly
instantaneous transmission of the signal over long dis-
tances, requiring the thing to be seen be illuminated, and
the duration of its visibility is the duration of that illumi-
nation. Sound travels quickly but nowhere near as fast as
light, is caused by the thing heard vibrating, which can
happen by action of the thing or by some other thing act-
ing upon it. The duration of the signal is the duration of the
vibration. Sounds can combine in ways that make the their

“meaning” ambiguous or difficult to comprehend. This is
also true of odors. Odors travel slowly, disperse—as does
sound—and persist. It is a slow signalling mechanism, suit-
able for communicating slowly dawning or persistently im-
portant information.

Vision can impart a great amount of information. Sound
less so. Odor can transmit a complicated structure (chemi-
cals) that can perform actions on whatever it contacts, just

as an acidic mist can corrode surfaces. In a cellular setting,
complex proteins can monitor internal activity in other
cells and take action, such as an immune reaction that will

“order” a cell to self-destruct. In fact, it might make sense to
make a virtual world at the cell level—where the primary
simulation is closer to biological than physical—so that
more complex information can be transmittable through
software “cell walls.”

How a chunk of software looks will reflect how it’s be-
having, what it’s doing, and its general health. The color or
appearance of a software chunk can indicate its origin or
its general purpose. When two systems are combined, they
will carry a visual, aromatic, sonic, tactile, or chemical fin-
gerprint indicating its origins and perhaps capabilities. Its
documentation can be glued to its surface.

Geometrical: Distance makes a difference. Software
chunks near each other can do things together that more
distant chunks cannot. Physical nesting means something.
Non-hierarchical containment means something. Software
motion can mean something; for example, several chunks
operating concurrently can make progress toward their
rendezvous point, and other software that is depending on
what happens when the rendezvous occurs can see prog-
ress and plan accordingly. For example, “it looks like that
will take a while, so why don’t I go do this other task in the
meantime.”

Moving closer together or farther apart can enable not
only more intimate or more formal communication, but also
can enable the other sense “channels.” Close up, the odor of
a software chunk can be obvious and immediate. Informa-
tion passing through touch can be enabled only through
close or immediate contact.

People visiting the virtual world can move things, and
perhaps by doing so they can improve performance or other
resource utilization. Or software can be programmed to
do that.

The size and shape of software could indicate its resource
use, so a chunk with a resource leak will continually grow
larger; software that spawns lots of (useless) processes will
be seen like a cancer metastasizing. Other components can
be programmed to observe such things and either try to re-
pair, minimize the damage, or report it.

Note that this is an example of what I expect to be a theme
for the research. It is possible today to program monitors
that observe the behavior of code and take actions based on
it. However, the incentive to do so is academic, and in some
if not most cases, infrastructure must be invented. When
systems are deployed in a RVW, a lot more infrastructure
is there already, in a form that is observable by people who
visit the world. Software that doesn’t go to some effort to
be an active part of that world will simply look and act silly.
And a price can be paid for looking silly when the actions
of other entities are unable to keep silly-looking things
from dying or falling apart. This forms an incentive to try

6

harder, and with more of the abstractions of software ren-
dered (virtually) real, there should be more opportunities
to be creative—especially in dreaming up new language
constructs and capabilities.

Biological: In some RVWs longevity might not be some-
thing to take for granted. A software chunk that does not
obtain nourishment might die very soon. In such a RVW,
all software chunks will eventually die and must reproduce
to continue in any form. Nourishment can be provided in
many forms, including the following:

•	 when work is injected into the virtual world, that
work is nourishment, and it is provided to those
software chunks that endeavor to do the work;
when work is successfully completed, additional
nourishment is provided to the software that con-
tributed to completing it

•	 when some software is “ill,” the software that cures
it gains nourishment

•	 when software is born, it gains nourishment
•	 when software vanquishes misbehaving software,

it gains nourishment
•	 when software improves the performance, resource

usage, or throughput (or other such thing), it gains
nourishment

Other biological mechanism can be programmed into the
simulation. As mentioned, some can be at the cellular level
where there is a rich and close set of interactions between
what corresponds to cells and proteins. Immunity can be
taken more literally in such a RVW, and evolution can be a
more important part of the behavior of the world.

This aspect of the RVW—which is something that will
be explored—is reminiscent of the “resource-limited com-
putation” approach to artificial intelligence pursued in the
1970s and early 1980s, partially rediscovered by genetic
programming and genetic algorithms during the last 5–10
years. Immortality implies stasis, which cannot be an par-
ticularly adaptable strategy. Forced turnover might change
how systems are put together. It could be useful to explore
this earlier literature to see what can be learned.

Transparency: Software chunks are automatically in-
strumented to show on or through their surfaces things that
are going on inside. For example, software that throws a lot
of exceptions (internally or not) would give off a particular
sick color and perhaps an odor. Software that is in a tight
loop would glow red then white hot (if you don’t like the cold-
green idea). Software that isn’t doing anything would have a
brown or black color and be laying on the ground. Software
also would make sounds depending on what it’s doing.

Some software is also literally transparent in that it’s pos-
sible to see inside, and the stuff seen there is physically in
the virtual world and manipulatable. Software that is not
created to be a participating citizen in the runtime virtual

world (can’t see, doesn’t move, isn’t instrumented, etc) is
called inscrutable and is shown as a black lump on the
ground. But perhaps it won’t last long in an RVW that simu-
lates a living system: without nourishment it will die.

Effective: Software can have controls that stick out of
its surface that can be used to control or customize it. Ad-
justments, feedback loops, control points, selectors, motion
simulators—all these are ways for outside software or people
to cause changes and action in a software chunk.

A person (or some software) could observe a remote re-
lationship by seeing a tether from one chunk to another
and perhaps intercept the interaction, redirect it, split it,
or replace it.

User Interfaces: When a person wandering the virtual
runtime comes across a software chunk that can be interact-
ed with, its interface appears on its surface, and the person
can expand that interface to the entire screen. A software
chunk that is capable of accepting a variety of interfaces—
such as a spreadsheet permitting the use of a general text ed-
itor to revise the text contained in cells—presents a default
interface along with a slot for a user-supplied one. Imagine
walking around with your own favorite user interface tools
and being able to plug them into compliant software.

This is how development, debugging, and repair could be
handled in the virtual runtime—with tools brought in by the
developers which would be able to alter source code, install
breakpoints, etc. Software would be variously transparent
(or inscrutable) depending on what parts of its innards are
available for inspection and modification.

This is one of the key points for investigation: Should
most development be done actually in the virtual world,
should some of it—the algorithmic part, for example—be
done in text as it is now, or should the bulk or all of it re-
main a textual exercise? At present I don’t see major or even
substantial development being done by direct manipulation
of representations in the RVW—such as by plugging wires
from one place to another. It will be possible to do some
tweaking and especially observation and debugging that
way, but if any entities are intended to do work in and with
the RVW by manipulating representations there, it is the
software that inhabits it.

However, it might be advantageous for development to
be situated within the RVW. I hope that more and better
interaction modes will be developed as experience in RVWs
increases. Perhaps a greater use of property sheets (or in-
strument panels) will be a natural outcome.

Domain-Specific: The virtual world would be divided
into domain-specific rooms where particular ontologies
would be in place as real objects. For example, in a business
room there would be (virtual) physical objects representing
(from our real world) money, orders, dates, and business rela-
tionships, such as customers, suppliers, and manufacturers.
It would not be up to a software designer to invent a repre-
sentation of money, for example—using money would be a

7

matter of manipulating objects found in the virtual world,
with perhaps rules or processes for making new instances,
mimicking the way that happens in the real world. Two
software chunks would be provided affordances according
to what they are/represent in the domain-specific world, so
that a customer would be able to purchase items but not
build things, unless that were also a role of the customer.
Whole swaths of functionality and capabilities would be
provided by the domain-specific room along with rules, laws,
and other constraints (both hard and soft) controlling and
regulating objects in that world.

This means that there is no need to provide translators
and interpreters for data structures. Every bit of software
created in a room will be able to understand and manipu-
late the underlying domain-specific objects there. This is
intended to control ad hoc and uncontrolled abstraction,
which can, in large-scale software systems, create a Babel
of specific languages too numerous and likely too complex
for designers and developers to understand and certainly
to invent reliably.

The correctness of these designed-in objects in each room
would be subject to relatively easy verification by experts in
the domain because they can visit the room and do simple
tests by direct manipulation. They can, for example, go to
a room supporting cash, withdraw some from a virtual
ATM, see how much they have, add it to their wallets and
see whether it adds up properly, go to a vending machine
and purchase items to see whether it acts like cash, etc.
Money in this world would obey laws, like the laws of phys-
ics but appropriate to currency. For example, it would never
be possible for any program to create money with negative
worth or value (for the surreptitious purpose of being able
to withdraw negative cash from an ATM, for example). A
Java program that tried to do that by setting a field, for ex-
ample, might “believe” it succeeded, but the thing it created
would simply disappear, and the code would be left with
nothing in its “hands.”

In such a (virtual) world, it would be easy to invent things
like monotonic variables (that either only grow or only
shrink so that determining whether x<y could take place
before the final versions of x and y are known if one is fixed
and the other monotonic in the right direction, for example.)
Though such variables have already been invented, my claim
is that operating in a (virtual) real world will make it easier
to do metaphorical thinking and thus be able to come up
with new programming constructs like this one.

Creating domain-specific worlds will seem to some to
be like standardization, but I believe the realization of the
objects—their appearances etc—in the virtual world will
make them more easily and obviously complete and correct.
One possible fallout from this is that perhaps interoperabil-
ity and even the standardization process would become not
only more stable, but more useful and even sensible. It’s not
hard to imagine a couple of corporations getting together

and creating a common runtime virtual world with all the
standardized components and behaviors built in.

In short, rooms are where the abstract becomes real.
Mapping to the real world: Some parts of the runtime

virtual world can be mapped to the real world. Imagine soft-
ware for a small office. The RVW for that system could have
within it printers, computers, cameras, and other devices
that correspond to ones in the actual office. By observing a
software chunk printing to a printer—with a physical tether
to it—a person could locate the printer in the real world.
Moreover, and perhaps more importantly, a person could
enter the RVW to direct output to a particular printer by
locating it in the representation of the actual space.

The convergence of the real and virtual worlds would
also help make programming / software constructs more
tangible—more concrete rather than more abstract as we
are pursuing now. With an active crossover, validation, us-
ability, understandability, agility, and rapid value creation
could be improved.

Scale and time: There is no reason to limit the level of
scale to the few orders of magnitude that would be imme-
diately apparent to a human visitor or a cell-sized entity. It
might make sense for there to be a largely invisible micro-
scopic world hidden from view from the large, main actors
in the system, and an even larger ecosystem for even larger
concerns. Observing stuff at other than the natural level of
scale for the observer would require special instruments,
and affecting things at those different scales would not be
straightforward.

One of the most important and most difficult issues as-
sociated with scale is time. First, for most software, time
is what passes while the cpu’s clock ticks away. Not many
pieces of software take time explicitly into account aside
from real-time software and operating system task sched-
uling (cron jobs, for example). In a RVW the issue of time
has at least to do with how fast software chunks are able
to move and therefore react. Should there be explicit clocks
or other time signals like day and night? What about when
people show up and the time needs to slow down for them
to see what’s going on? Time will be tricky.

What We Might Learn

Dealing in a purely abstract world is not helping as much
now as it did in the past, where abstraction hid irrelevant
details. Now the abstractions are the irrelevant details.

By making abstractions real with physical, biological, and
other laws in effect, my hope is that it will be possible to
invent new programming constructs and even paradigms
based on leveraging a real environment where software
lives. For example, by embodying software in a biological
setting we might be able to take repair, self-repair, and
adaptation more seriously. And with a realistic concept of
survival, competition, and nourishment, it might even be

8

possible to think about using evolution with the wild fitness
function—the one in use in our real world.

Cognition will be a viable and real part of software, en-
abling intelligent fallback mechanisms formerly dreamt of
only in artificial intelligence systems. By giving software a
corporeality, developers will be able to better use the intu-
ition they’ve gained by living in the real world, both to design
and produce better and more reliable software, and to under-
stand better what programming and software development
are so that better languages and tools can be built.

By being able to visit the world of running software, peo-
ple will be able to understand even better the software
they’ve built and perhaps be better able to improve what
they’ve produced. Damage to software and data will be vis-
ible as hidden mechanisms associated with the underlying
simulation (the physics and biology engines, for example) do
their work and show tears, discoloration, and distortion.

Naturally running the simulations in addition to the ac-
tual computations will be expensive. The bet is that the com-
putational cost will be outweighed by the benefits gained
by better programming languages, less transcoding, better
self-sustenance, and a more intuitive operating environment.
Paying for the additional computation for the simulation
will be done with some of the cores on a set of (massively)
multicore-based computers. The further bet is that it won’t
take many cores to do enough to effect the constraints im-
posed by the virtual world.

Another key problem to solve is the time mismatch be-
tween humans and computers. It’s easy to imagine visiting
a world where events happen on a human speed scale, and
also for software interacting with software to be able to
keep up with the speed, but people watching software in-
teract will see at best blurs. Perhaps a statistical approach
will work, or perhaps only some of the software’s activities
will be visible to people, with the high-speed movements
and changes hidden. This could imply a different dimen-
sionality for people and software, with 3 or 4 only in com-
mon. This exploration, if it comes up with something novel,
could benefit ordinary debugging and inspection in Java
and other languages.

Because the runtime virtual worlds will be much more
elaborate than typical runtimes or virtual machines, with
the possibilities for people to visit and truly examine the
software inhabiting it, and because there will be a theme of
exposing the health and status of software chunks, it might
make sense to explore the idea of continual testing. That is,
if there are unit tests (and even integration tests that can
be executed without supervision), perhaps they can be run
while the software system itself is executing, but during
lulls. This might encourage more consistency checks to be
designed and programmed by software creators. Perhaps if
successfully completing tests with a clean bill of health is a
way for software to not die in the RVW, these practices will

be encouraged. This could change how development and
particularly never-ending development is done.

The nature of development could change because the
nature of the execution environment is so different. One
side avenue of research—perhaps something another group
could look at—is the sociology and psychology of adoption
of new programming or software development techniques
based on the available of new technology or infrastructure.
Many, starting possibly with Donald Knuth, have recom-
mended literate programming, but the amount of extra
work required to do this well limited its adoption, despite
the fairly clear and obvious benefits of the practice. No
amount of technology brought to bear to make it easier
seemed to help.

Research Steps in Detail

The following are the steps needed to explore the ques-
tions above. This is the section where the fail-fast stuff is
described.

Is there any merit at all in this idea?: The first step is
to find out whether it will be possible to learn anything from
this approach or whether it has any advantages at all.

The first step will be to do some very simple experiments
to determine whether any of the basic ideas can work. The
first steps are to so some small, 1-person experiments.

One would be to see whether it’s possible to evolve entities
that can move to software components in distress. These
entities should be made up from parts not usually seen in
computation. Another would be to see whether it’s possible
to evolve anything interesting, however minor, using the
natural fitness function (survival). This would be an impor-
tant accomplishment for the project, so seeing any progress
early on would be a useful measure. A third test would be
to see whether we can come up with a new computational
construct based on the assumptions of a virtual runtime.
This proposal has a couple, but for this test I would want
something that could be tested in real (though toy) code.

Another major early test would be to construct a tiny,
2-d world with some laws in place and to see what it would
be like to program in such a world—particularly whether
it’s possible to take advantage of the physicality of it. For
example, can proximity be useful? How about seeing? How
would seeing work? How about smell?

Assuming some degree of success for these early experi-
ments, the next step is to extend the tiny world to one a
little richer, and in it to see whether it’s possible to effect
changes based on learned or evolved components. The ul-
timate aim of this tiny prototype is to determine whether
it’s possible to construct a runtime world where the natural
fitness function can operate. This would be a major discov-
ery in that all evolved computational entities to date rely
on a human-tuned fitness function. In general, each of the
claimed possible advantages of the proposed approach will

Fail

Fast

Ideas

9

be explored in the small in this tiny prototype. The point
is to determine whether it’s reasonable to attempt a larger,
more elaborate, more fully featured prototype.

The tiny prototype will be in a dynamic language, and
I’ll be trying to leverage as much existing code as I can find
that will work—but not worrying about great visualization
or accurate/complete physics, accurate/complete biology. If
the early experiments above are successful, I’ll use the pro-
totype to see whether I can come up with any new compu-
tational construct—perhaps applicable only in the runtime
virtual world—or any insight at all into system building or
programming that would be interesting to report to some-
thing like a programming language workshop. I suspect this
could take 6–12 months, but I hope more toward the short
end of that scale. I will at the same time try to engage some
other collaborators to help.

This will constitute an early failure indicator—or more
likely an it’s-too-early-to-try-this indicator. Another mea-
sure that might be interesting is whether the results of this
stage are interesting to any publication venue—again down
to the level of a workshop.

I estimate this will be in months 0–12 of the project,
and just me.

What is the nature of runtime virtual worlds: After
some work in the first stage, it will become possible to fig-
ure out what the real nature of the runtime virtual world
could (or would) be. From what’s written so far we know
that we will be creating something like a virtual machine
or runtime for executing software. Moreover, we will need
to build in either a physics and biology engine or something
like them. This implies that software “chunks” need not
only to execute as designed but be manifest or encapsulated
in such a way that the simulation engines can manipulate
them. Will this be via an actual virtual machine? Will it
be through a sort of proxy setup where an ordinary VM or
runtime runs the application software and tethers hook it
to a simulation engine which then feeds back into the or-
dinary execution? Answering these question is the second
step in the program. The questions will, of course, be ten-
tative because I expect there to be a number of twists and
turns as we go along.

I estimate this will be in months 3–9 of the project, and
a combination of me and a postdoc.

Real or simulated?: Exploring the research questions
perhaps doesn’t require actual running applications but only
simulations of them. Perhaps we can learn enough about
the statistical behavior of particular applications to model
them accurately enough to provide an adequate platform to
study the benefits and attributes of runtime virtual worlds.
We can likely get a sense of this during the initial prototyp-
ing stage. Possibly we can mine an actual system descrip-
tion at a depth suitable for simulation from Grady Booch’s
work on surveying software architectures.

I estimate this will be in months 3–12 of the project, and

the postdoc and me doing the work.
Language(s) and a fully functional prototype: There

are a number of distinct programming languages in play in
a real RVW executing a software system:

•	 the primary language of the application. This is a
language like Java, probably.

•	 the language the RVW is written in, including the
simulation engines. This could be C or C++, but Java
could work and perhaps some other languages.

•	 the language that entities able to be manipulated
by the simulation engines are written in. This lan-
guage might need to be more flexible and dynamic
than the others because these entities might need
to evolve (literally), for example. This language
also needs to be parallel or support threads, but,
again, not in a rigid way. I imagine a dialect of Lisp
would be a good choice for this. Also, this might
enable us to leverage AI software already out there
in repositories.

The question of language is likely to be a difficult and
controversial one. To be honest about it, I’m fluent really
only in Lisp-like languages, though I’ve programmed in
others. I expect to use a mixed platform or set of platforms
with interlanguage communications forming a key part of
the system. I will need a programming partner who is ener-
getic, enthusiastic, and able and willing to be extravagant
in his or her thinking.

Doing a full-blown prototype that could run real code
will probably require a team of people and about a year of
duration. I estimate this will be in months 12–24 with a
team of 3 people plus me.

Visualization and simulation: When people visit a run-
time virtual world, they need to see and perhaps hear, smell,
and feel the stuff that’s there. This requires some degree of
visualization, and most people will expect Second-Life qual-
ity at least. Visualization is not high on my list of priorities,
and I would be happy in the initial prototype stage with a
simple 2d visualization, but perhaps we can do better when
we see what’s out there.

It’s possible other existing platforms could be used—for
example, Squeak or something like it. There are possibly ex-
isting physics engines, though perhaps not a biology engine.
The ideas discussed earlier about contract and business

10

engines might have already been explored by researchers I
don’t know of offhand, and will be explored.

Exploring the possibilities for existing visualization and
simulation engines and doing some preliminary prototyp-
ing can happen early on with a postdoc.

I estimate be in months 3–6 for the postdoc.

Organization of the Project

The project will be mostly a 1-person or 2-person project at
first. I hope we will be able to find a postdoc or similar part-
ner. If we find enough results or promise, we can perhaps
pursue a fully functional runtime virtual world that could
run large or substantial Java-based systems. That would re-
quire a larger team with different characteristics. I have a
lot of experience running software development projects.

But, because the ideas we will be exploring are possibly
far out, I would like to enlist “volunteers” from the com-
munity at large. I imagine an open-source-like community
with workshops and small symposia taking place regularly,
possibly with an early kickoff workshop this Winter.

All the code will be open source.
Some universities have researchers or students who might

be interested, including MIT with Martin Rinard, UC Irvine
with Crista Lopes, and The Chinese University of Hong Kong
with Elisa Baniassad.

In Conclusion

With software systems growing beyond human comprehen-
sion, depending on formal methods attached to abstraction
is seeming less likely to be effective as the pace of growth of
systems exceeds that of progress with those methods. Our
old friend abstraction, once the cute puppy of software cre-
ation is now become a large, ugly dog displaying its earlier
charm only on occasion. Or at least the ugliness is starting to
become apparent. We need to find ways of coping with scale
and complexity by using our super-performing computers
rather than trying to squeeze every ounce of computational
horsepower into the main computation. Not only is it too
hard to understand all the abstractions that might appear in
a large system, the extensive use of frameworks often means
that data is transcoded many, many times—sometimes tens
of thousands of times in a simple business transaction. By
making abstractions real and outside designer and developer
control, we can start to tame these problems.

An intriguing experiment perhaps worth trying.

References & Further Reading

[0] Northrop, L., et al, Ultra-Large-Scale Systems: The
Software Challenge of the Future, The Software Engi-
neering Institute, Carnegie-Mellon University, 2006.

[1]	 Gabriel, R., Goldman, R., “Conscientious Software,”
Proceedings of the 21st Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications, Portland, Oregon, 2006.

[2]	 Maturana, H., “Autopoiesis,” in Autopoiesis: A Theory
of Living Organization, Milan Zeleny (ed.), pp. 21–30,
New York, North Holland, 1981.

[3]	 Maturana, H., Varela, F., “Autopoiesis: The Organiza-
tion of the Living,” in Autopoiesis and Cognition: The
Realization of the Living, (1980), pp. 59–138, 1973.

[4]	 Rinard, M., “Automatic Detection and Repair of Er-
rors in Data Structures,” Companion to the 18th An-
nual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications,
Anaheim, CA, pp. 221–239, 2003.

[5]	 Rinard, M., Cadar, C., Nguyen, H., “Exploring the Ac-
ceptability Envelope,” Companion to the 20th An-
nual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
San Diego, California, 2005.

[6] Feyerabend, Paul, “Farewell to Reason,” London: Verso,
1987

[7] Gruber, T., http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITop-
ics/Ontologies#readon

