

Qlisp

Richard P. Gabriel
Lucid, Inc.

John McCarthy
Stanford University

Abstract

Multiprocessing programming languages must support the styles of programming that
are natural to the programmer, and they must be able to express all of the forms of con-
currency that exist. Qlisp, a dialect of Lisp, is proposed as a multiprocessing programming
language which is suitable for studying the styles of parallel programming.

There are two sorts of parallelism in Qlisp: 1) the true parallelism that derives from the
parallel evaluation of arguments, and 2) the unstructured concurrency of process invocation
in which a number of processes are created and messages are passed among them, causing
some pattern of concurrent activity.

1. Introduction

As the need for high-speed computers increases, the need for multiprocessors becomes
more apparent. One of the major stumbling blocks to the development of useful multipro-
cessors has been the lack of a good multiprocessing language—one which is both powerful
and understandable to programmers.

Among the most compute-intensive programs are artificial intelligence (AI) programs,
and researchers hope that the potential degree of parallelism in AI programs is higher than
in many other applications. In this paper we propose multiprocessing extensions to Lisp.

1

§ 1 Introduction

Unlike other proposed multiprocessing Lisps, this one provides only a few very powerful
and intuitive primitives rather than a number of parallel variants of familiar constructs.

This language is called Qlisp.

2. Design Goals

1. Because Lisp manipulates pointers, this Lisp dialect will run in a shared-memory architec-
ture;

2. Because any real multiprocessor will have only a finite number of CPU’s, and because the
cost of maintaining a process along with its communications channels will not be zero,
there must be a means to limit the degree of multiprocessing at runtime;

3. Only minimal extensions to Lisp should be made to help programmers use the new con-
structs;

4. Ordinary Lisp constructs should take on new meanings in the multiprocessing setting,
where appropriate, rather than proliferating new constructs; and

5. The constructs should all work in a uni-processing setting (for example, it should be
possible to set the degree of multiprocessing to 1 as outlined in point 2).

3. QLET

The obvious choice for a multiprocessing primitive for Lisp is one which evaluates
arguments to a lambda-form in parallel. QLET serves this purpose. Its form is:

(QLET prop ((x1arg1)
...

(xn argn))
. body)

Prop is a propositional parameter that is evaluated before any other action regarding
this form is taken; it is assumed to evaluate to one of: (), EAGER, or something else.

If prop evaluates to (), then the QLET acts exactly as a LET. That is, the arguments
arg1 . . . argn are evaluated as usual and their values bound to x1 . . . xn, respectively.

If prop evaluates to non-(), then the QLET will cause some multiprocessing to happen.
Assume prop returns something other than () or EAGER. Then processes are spawned,

2

§ 3 QLET

one for each argi. The process evaluating the QLET goes into a wait state: When all of
the values arg1 . . . argn are available, their values are bound to x1 . . . xn, respectively, and
each form in the list of forms, body, is evaluated.

Assume prop returns EAGER. Then QLET acts exactly as above, except that the
process evaluating the QLET does not wait: It proceeds to evaluate the forms in body.
But if in evaluating the forms in body the value of one of the arguments is required, argi,
the process evaluating the QLET waits. If that value has been supplied already, it is
simply used.

To implement EAGER binding, the value of the EAGER variables could be set to
an ‘empty’ value, which could either be an empty memory location, like that supported
by the Denelcor HEP [Smith 1978], or a Lisp object with a tag field indicating an empty
or pending object. At worst, every use of a value would have to check for a full pointer.

We will refer to this style of parallelism as QLET application.

3.1 Queue-based

The Lisp is described as ‘queue-based’ because each spawned process is placed on a
global queue of processes. Processes are assigned to processors. Each processor is assumed
to be able to run any number of processes, much as a timesharing system does, so that
regardless of the number of processes spawned, progress will be made. We will call a
process running on a processor a job.

The ideal situation is that the number of processes active at any one time will be
roughly equal to the number of physical processors available.1

The purpose of prop, then, is to control the number of processes spawned. Simulations
show a marked dropoff in total performance as the number of processes running on each
processor increases, assuming that process creation time is non-zero.

1 Strictly speaking this isn’t true. Simulations show that the ideal situation depends on the length

of time it takes to create a process and the amount of waiting the average process needs to do. If the

creation time is short, but realistic, and if there is a lot of waiting for values, then it is better to use some

of the waiting time creating active processes, so that no processor will be idle. The ideal situation has no

physical processor idle.

3

§ 3 QLET

3.2 Example QLET

Here is a simple example of the use of QLET. The point of this piece of code is to
apply the function CRUNCH to the nth

1 element of the list L1, the nth
2 element of the

list L2, and the nth
3 element of the list L3.

(QLET T ((X
(DO ((L L1 (CDR L))

(I 1 (1+ I))
((= I N1) (CAR L)))))

(Y
(DO ((L L2 (CDR L))

(I 1 (1+ I))
((= I N2) (CAR L)))))

(Z
(DO ((L L3 (CDR L))

(I 1 (1+ I))
((= I N3) (CAR L))))))

(CRUNCH X Y Z))

3.3 A Real Example

This is an example of a simple, but real, Lisp function. It performs the function of
the traditional Lisp function, SUBST, but in parallel:

(DEFUN QSUBST (X Y Z)
(COND ((EQ Y Z) X)

((ATOM Z) Z)
(T
(QLET T ((Q (QSUBST X Y (CAR Z)))

(R (QSUBST X Y (CDR Z))))
(CONS Q R)))))

4. Excessive Parallelism

The most straightforward possibilities for achieving effective parallelism occur when
only AND-parallelism is required. AND-parallelism occurs when there are some number

4

§ 4 Excessive Parallelism

of tasks, each of which must be performed, with minimal interdependence between them.
However, since Lisp programming is recursive, AND-parallelism alone is not always possi-
ble, and there is still the problem of avoiding too much parallelism. For example QSUBST

will generate parallelism in computing the arguments of a single CONS. It is straightfor-
ward to avoid excessive parallelism if the program can determine how big a computation
will be. If it is going to be too small, the QLET propositional parameter can be set to
be (), or control can be given to a version of the program that has no parallelism. In
general, efficiency will not be very sensitive to how the parallelism is arranged to occur
provided that amount of bookkeeping to determine when to introduce parallelism is small,
and this will be true if parallelism is avoided for small computations.

There are at least two ways of doing this.

First, it may be trivial to determine how big the computation is. Consider computing
n!. In order to do the computation recursively, we generalize it to computing the product
of the numbers from m to n:

(DEFUN FACT (N)
(LABELS

((MULT

(LAMBDA (N M)
(COND ((= N M) M)

(T
(LET ((H (FLOOR (+ N M) 2)))
(∗ (MULT N H) (MULT (+ H 1) M)))))))

(MULT 1 N)))

If |n−m| is small enough, we can call a function that multiplies them non-recursively.
Otherwise, we split the range in half and compute the products of the halves in parallel.
This immediately generalizes to computing any commutative operation applied to elements
indexed by the numbers from m to n, because |n − m| provides an estimate of the size of
the problem, which can be used to determine whether parallelism is worthwhile.

In this example it might be better to put the parallelism in the bignum multiplication
code rather than in the overall structure of the program. The point is that it is immediately
decided whether the computation is too small to do in parallel.

5

§ 4 Excessive Parallelism

Second, perhap the size of the computation can be computed by a linear scan of the
arguments of the function. When the time required to compute the function is much larger
than the time taken by the scan, this approach can be used to decide whether to compute
the argument values in parallel.

From this point of view, QSUBST presents the most difficult case: The time re-
quired to determine the size of the computation is as large as the time required to do the
computation. Here one might as well gamble on parallelism if the program is really going
to have to do substitutions with no advance estimate of the size of the expressions.

However, if an operation of substitution or something of similar characteristics is going
to occur frequently in a program, it may be worthwhile to include a size estimate as part of
the data structures involved. An extreme would be to use a modified CONS that includes
a size as well as the two pointers. We suspect that this is rarely worthwhile and that it
will be more common to use data structures that contain size estimates sparingly.

5. QLAMBDA Closures

In some Lisps (Common Lisp, for example) it is possible to create closures: function-
like objects that capture their definition-time environment. When a closure is invoked,
that environment is re-established.

QLET application, as we saw above, is a good means for expressing parallelism that
has the regularity of, for example, an underlying data structure. Because a closure is
already a lot like a separate process, it could be used as a means for expressing less regular
parallel computations.

(QLAMBDA prop (lambda-list) . body)

creates a closure. Prop is a propositional parameter that is evaluated before any other ac-
tion regarding this form is taken. It is assumed to evaluate to either (), EAGER, or some-
thing else. If prop evaluates to (), then the QLAMBDA acts exactly as a LAMBDA.
That is, a closure is created; applying this closure is exactly the same as applying a normal
closure.

If prop evaluates to something other than EAGER, the QLAMBDA creates a clo-
sure that, when invoked, is run as a separate process. Creating the closure by evaluating the
QLAMBDA expression is called spawning; the process that evaluates the QLAMBDA

6

§ 5 QLAMBDA Closures

is called the spawning process; and the process that is created by the QLAMBDA is called
the spawned process. When a closure running as a separate process is invoked, the separate
process is started, the arguments are evaluated by the spawning process, and a message
is sent to the spawned process containing the evaluated arguments and a return address.
The spawned process does the appropriate lambda-binding, evaluates its body, and finally
returns the results to the spawning process. We call a closure that will run or is running
in its own process a process closure. In short, the expression (QLAMBDA non-() . . .)
returns a process closure as its value.

If prop evaluates to EAGER, then a closure is created which is immediately spawned.
It lambda-binds empty binding cells as described earlier, and evaluation of its body starts
immediately. When an argument is needed, the process either has had it supplied or it
blocks. Similarly, if the process completes before the return address has been supplied, the
process blocks.

5.1 Value-Requiring Situations

Suppose there are no further rules for the timing of evaluations than those given, along
with their obvious implications; have we defined a useful set of primitives?

No. Consider the situation:

(PROGN (F X) (G Y))

If F happens to be bound to a process closure, then the process evaluating the PROGN

will start the process evaluating (F X), wait for the result, and then move on to evaluate
(G Y), throwing away the value F returned. If this is the case, it is plain that there is not
much of a reason to have process closures.

Therefore we make the following behavioral requirement: If a process closure is invoked
in a value-requiring context, the calling process waits; and if a process closure is invoked
in a value-ignoring situation, the caller does not wait for the result, and the callee is given
a void return address.

For example, given the following code:

(LET ((F (QLAMBDA T (Y)(PRINT (∗ Y Y)))))
(F 7)
(PRINT (∗ 6 6)))

7

§ 5 QLAMBDA Closures

there is no a priori way to know whether you will see 49 printed before or after 36.2

To increase the readability of code we introduce two forms, which could be defined as
macros, to guarantee a form will appear in a value-requiring or in a value-ignoring position.

(WAIT form)

will evaluate form and wait for the result;

(NO-WAIT form)

will evaluate form and not wait for the result.

For example,

(PROGN

(WAIT form1)
form2)

will wait for form1 to complete.

5.2 Invoking a Process Closure

Process closures can be passed as arguments and returned as values. Therefore, a
process closure can be in the middle of evaluating its body given a set of arguments when
it is invoked by another process. Similarly, a process can invoke a process closure in a value-
ignoring position and then immediately invoke the same process closure with a different
set of arguments.

Each process closure has a queue for arguments and return addresses. When a process
closure is invoked, the new set of arguments and the return address is placed on this queue.
The body of the process closure is evaluated to completion before the set of arguments at
the head of the queue is processed.

2 We can assume that there is a single print routine that guarantees that when something is printed,

no other print request interferes with it. Thus, we will not see 43 and then 96 printed in this example.

8

§ 5 QLAMBDA Closures

We will call this property integrity, because a process closure is not copied or disrupted
from evaluating its body with a set of arguments: Multiple invocations of the same process
closure will not create multiple copies of it.

6. CATCH and QCATCH

So far we have discussed methods for spawning processes and communicating results.
Are there any ways to kill processes? Yes, there is one basic method, and it is based on
an intuitively similar, already-existing mechanism in many Lisps.

CATCH and THROW are a way to do non-local, dynamic exits within Lisp. The
idea is that if a computation is surrounded by a CATCH, then a THROW will force
return from that CATCH with a specified value, terminating any intermediate computa-
tions.

(CATCH tag form)

will evaluate form. If form returns with a value, the value of the CATCH expression is
the value of the form. If the evaluation of form causes the form

(THROW tag value)

to be evaluated, then CATCH is exited immediately with the value value. THROW

causes all special bindings done between the CATCH and the THROW to revert. If
there are several CATCH’s, the THROW returns from the CATCH dynamically closest
with a tag EQ to the THROW tag.

9

§ 6 CATCH and QCATCH

6.1 CATCH

In a multiprocessing setting, when a CATCH returns a value, all processes that were
spawned as part of the evaluation of the CATCH are killed at that time.

Consider:

(CATCH ’QUIT
(QLET T ((X

(DO ((L L1 (CDR L)))
((NULL L) ’NEITHER)
(COND ((P (CAR L))

(THROW ’QUIT L1)))))
(Y
(DO ((L L2 (CDR L)))

((NULL L) ’NEITHER)
(COND ((P (CAR L))
(THROW ’QUIT L2))))))

X))

This piece of code will scan down L1 and L2 looking for an element that satisfies P. When
such an element is found, the list that contains that element is returned, and the other
process is killed, because the THROW causes the CATCH to exit with a value. If both
lists terminate without such an element being found, the atom NEITHER is returned.

Note that if L1 and L2 are both circular lists, but one of them is guaranteed to contain
an element satisfying P, the entire process terminates.

If a process closure was spawned beneath a CATCH and if that CATCH returns
while that process closure is running, that process closure will be killed when the CATCH

returns.

6.2 QCATCH

(QCATCH tag form)

QCATCH is similar to CATCH, but if the form returns with a value (no THROW

occurs) and there are other processes still active, QCATCH will wait until they all finish.

10

§ 6 CATCH and QCATCH

The value of the QCATCH is the value of form. For there to be any processes active
when form returns, each one had to have been invoked in a value-ignoring setting, and
therefore all of the values of the outstanding processes will be duly ignored.

If a THROW causes the QCATCH to exit with a value, the QCATCH kills all
processes spawned beneath it.

We will define another macro to simplify code. Suppose we want to spawn the evalu-
ation of some form as a separate process. Here is one way to do that:

((LAMBDA (F)
(F) T)

(QLAMBDA T () form))

A second way is:

(FUNCALL (QLAMBDA T () form))

We will chose the latter as the definition of:

(SPAWN form)

Notice that SPAWN combines spawning and invocation.

Here are a pair of functions which work together to define a parallel EQUAL function
on binary trees:

(DEFUN EQUAL (X Y)
(QCATCH ’EQUAL

(EQUAL-1 X Y)))

EQUAL uses an auxiliary function, EQUAL-1:

11

§ 6 CATCH and QCATCH

(DEFUN EQUAL-1 (X Y)
(COND ((EQ X Y))

((OR (ATOM X)
(ATOM Y))

(THROW ’EQUAL ()))
(T
(SPAWN (EQUAL-1 (CAR X)(CAR Y)))
(SPAWN (EQUAL-1 (CDR X)(CDR Y)))
T)))

The idea is to spawn off processes that examine parts of the trees independently. If
the trees are not equal, a THROW will return a () and kill the computation. If the trees
are equal, no THROW will ever occur. In this case, the main process will return T to the
QCATCH in EQUAL. This QCATCH will then wait until all of the other processes
die off; finally it will return this T.

6.3 THROW

THROW will throw a value to the CATCH above it, and processes will be killed
where applicable. The question is, when a THROW is seen, exactly which CATCH is
thrown to and exactly which processes will be killed?

The processes that will be killed are precisely those processes spawned beneath the
CATCH that receives the THROW and those spawned by processes spawned beneath
those, and so on.

The question boils down to which CATCH is thrown to. To determine that CATCH,
find the process in which the THROW is evaluated and look up the process-creation chain
to find the first matching tag.

In a code fragment like

(QLAMBDA T () (THROW tag value))

the THROW is evaluated within the QLAMBDA process closure, so look at the process
in which the QLAMBDA was created to start searching for the proper CATCH. Thus,
if a process closure is invoked with a THROW in it, the THROW will be to the first

12

§ 6 CATCH and QCATCH

CATCH with a matching tag in the process chain in which the QLAMBDA was created,
not in the current process chain.

Thus we say that THROW throws dynamically by creation.

7. UNWIND-PROTECT

When THROW is used to terminate a computation, there may be other actions that
need to be performed before the context is destroyed. For instance, suppose that some files
have been opened and their streams let-bound. If the bindings are lost, the files will remain
open until the next garbage collection. There must be a way to gracefully close these files
when a THROW occurs. The construct to do that is UNWIND-PROTECT.

(UNWIND-PROTECT form cleanup)

will evaluate form. When form returns, cleanup is evaluated. If form causes a THROW

to be evaluated, cleanup will be performed anyway. Here is a typical use:

(LET ((F (OPEN “FOO.BAR”)))
(UNWIND-PROTECT (READ-SOME-STUFF) (CLOSE F)))

In a multiprocessing setting, when a cleanup form needs to be evaluated because a
THROW occurred, the process that contains the UNWIND-PROTECT is retained to
evaluate all of the cleanup forms for that process before it is killed. The process is placed
in an un-killable state, and if a further THROW occurs, it has no effect until the current
cleanup forms have been completed,.

Thus, if control ever enters an UNWIND-PROTECT, it is guaranteed that the
cleanup form will be evaluated. Dynamically nested UNWIND-PROTECT’s will have
their cleanup forms evaluated from the inside-out, even if a THROW has occurred.

To be more explicit, recall that the CATCH that receives the value thrown by a
THROW performs the kill operations. The UNWIND-PROTECT cleanup forms are
evaluated in un-killable states by the appropriate CATCH before any kill operations are
performed. This means that the process structure below that CATCH is left in tact until
the UNWIND-PROTECT cleanup forms have completed.

13

§ 7 UNWIND-PROTECT

7.1 Other Primitives

One pair of primitives is useful for controlling the operation of the processes as they
are running; they are SUSPEND-PROCESS and RESUME-PROCESS. The former
takes a process closure and puts it in a wait state. This state cannot be interrupted,
except by a RESUME-PROCESS, which will resume this process. This is useful if
some controlling process wishes to pause some processes in order to favor some process
more likely to succeed than these.

A use for SUSPEND-PROCESS is to implement a general locking mechanism,
which will be described later.

8. The Rest of the Article

This completes the definition of the extensions to Lisp. Although these primitives form
a complete set—any concurrent algorithm can be programmed with only these primitives
along with the underlying Lisp—a real implementation of these extensions would supply
further convenient functions, such as an efficient locking mechanism.

The remainder of this article will describe some of the tricks that can be done in this
language.

9. Resource Management

We’ve mentioned that we assume a shared-memory Lisp, which implies that many
processes can be accessing and updating a single data structure at the same time. In
this section we show how to protect these data structures with critical sections to allow
consistent updates and accesses.

The key is closures. We spawn a process closure which is to be used as the sole
manager of a given resource, and we conduct all transactions through that closure. We
illustrate the method with an example.

Suppose we have an application where we will need to know for very many n whether
∃ i s.t. n = Fib(i), where Fib is the Fibonacci function. We will call this predicate Fib-p.
Suppose further that we want to keep a global table of all of the Fibonacci argument/value
pairs known, so that Fib-p will be a table lookup whenever possible. We can use a variable,
∗V∗, which has a pair—a cons cell—as its value with the CAR being i and the CDR

being n, and n = Fib(i), such that this is the largest i in the table. We imagine filling up

14

§ 9 Resource Management

this table as needed, using it as a cache, but the variable ∗V∗ is used in a quick test to
decide whether to use the table rather than Fibonacci function to decide Fib-p.

We will ignore the details of the table manipulation and discuss only the variable ∗V∗.
When a process wants to find out the highest Fibonacci number in the table, it simply will
do (CDR ∗V∗). If a process wants to find out the pair (i . Fib(i)), it had better do this
indivisibly because some other processes might updating ∗V∗ concurrently.

We assume that we do not want to CONS another pair to update ∗V∗—we will
destructively update the pair. Thus, we do not want to say:

. . .

(SETQ ∗V∗ (CONS arg val))
. . .

Here is some code to set up the ∗V∗ handler:

(SETQ ∗V-HANDLER∗ (QLAMBDA T (CODE) (CODE *V*)))

The idea is to pass this process closure a second closure which will perform the desired
operations on its lone argument; the ∗V∗ handler passes ∗V∗ to the supplied closure.

Here is a code fragment to set up two variables, I and J, which will receive the values
of the components of ∗V∗, along with the code to get those values:

(LET ((I ())(J ()))
(∗V-HANDLER∗ (LAMBDA (V)

(SETQ I (CAR V))
(SETQ J (CDR V))))

. . .)

Because the process closure will evaluate its body without creating any other copies
of itself, and because all updates to ∗V∗ will go through ∗V-HANDLER∗, I and J will
be such that J = Fib(I).

The code to update the value of ∗V∗ would be:

15

§ 9 Resource Management

. . .

(∗V-HANDLER∗ (LAMBDA (V)
(SETF (CAR V) arg)
(SETF (CDR V) val)))

. . .

If the process updating ∗V∗ does not need to wait for the update, this call can be put
in a value-ignoring position.

9.1 Fine Points

If the process closure that controls a resource is created outside of any CATCH or
QCATCH that might be used to terminate subordinate process closures, then once the
process closure has been invoked, it will be completed. If this process closure is busy when
it is invoked by some process, then even if the invoking process is killed, the invocation
will proceed. Thus requests on a resource controlled by this process closure are always
completed. Another way to guarantee that a request happens is to put it inside of an
UNWIND-PROTECT.

10. Locks

When we discussed SUSPEND-PROCESS and RESUME-PROCESS we men-
tioned that a general locking mechanism could be implemented using SUSPEND-PRO-

CESS. Here is the code for this example:

(DEFMACRO GET-LOCK ()
’(CATCH ’FOO

(PROGN

(LOCK
(QLAMBDA T (RES)(THROW ’FOO RES)))

(SUSPEND-PROCESS))))

When SUSPEND-PROCESS is called with no arguments, it puts the currently running
job (itself) into a wait state.

1 (LET ((LOCK

16

§ 10 Locks

2 (QLAMBDA T (RETURNER)
3 (CATCH LOCKTAG
4 (LET ((RES (QLAMBDA T () (THROW ’LOCKTAG T))))
5 (RETURNER RES)
6 (SUSPEND-PROCESS))))))
7 (QLET T ((X
8 (LET ((OWNED-LOCK (GET-LOCK)))
9 (DO ((I 10 (1− I)))

10 ((= I 0)
11 (OWNED-LOCK) 7))))
12 (Y
13 (LET ((OWNED-LOCK (GET-LOCK)))
14 (DO ((I 10 (1− I)))
15 ((= I 0)
16 (OWNED-LOCK) 8))))))
17 (LIST X Y))

The idea is to evaluate a GET-LOCK form, which in this case is a macro, that will
return when the lock is available; at that point, the process that called the GET-LOCK
form will have control of the lock and, hence, the resource in question. GET-LOCK returns
a function that is invoked to release the lock.

Lines 7–17 are the test of the locking mechanism: The QLET on line 7 spawns two
processes; the first is the LET on lines 8–11; the second is the LET on lines 13–16. Each
process will attempt to grab the lock, and when a process has that lock, it will count down
from 10, release the lock, and return a number—either 7 or 8. The two numbers are put
into a list that is the return value for the test program.

As we mentioned earlier, when a process closure is evaluating its body given a set of
arguments, it cannot be disrupted—no other call to that process closure can occur until
the previous calls are complete. To implement a lock, then, we must produce a process
closure that will return an unlocking function, but which will not actually return!

GET-LOCK sets up a CATCH and calls the LOCK function with a process closure
that will return from this CATCH. The value that the process closure throws will be the
function we use to return the lock. We call LOCK in a value-ignoring position so that when

17

§ 10 Locks

the lock is finally released, LOCK will not try to return a value to the process evaluating
the GET-LOCK form. The SUSPEND-PROCESS application will cause the process
evaluating the GET-LOCK form to wait for the THROW that will happen when LOCK
sends back the unlocking function.

LOCK takes a function, the RETURNER function, that will return the unlocking
function. LOCK binds RES to a process closure that throws to the CATCH on line 3.
This process closure is the function that we will apply to return the lock. The RE-
TURNER function is applied to RES, which throws RES to the catch frame with tag
FOO. Because (RETURNER RES) appears in a value-ignoring position, this process clo-
sure is applied with no intent to return a value. Evaluation in LOCK proceeds with the
call to SUSPEND-PROCESS.

The effect is that the process closure that will throw to LOCKTAG—and which will
eventually cause LOCK to complete—is thrown back to the caller of GET-LOCK, but
LOCK does not complete. No other call to LOCK will begin to execute until the THROW

to LOCKTAG occurs—that is, when the function, OWNED-LOCK, is applied.

Hence, exactly one process at a time will execute with this lock.

The key to understanding this code is to see that when a THROW occurs, it searches
up the process-creation chain that reflects dynamically scoped CATCH’s. Because we
spawned the process closure in GET-LOCK beneath the CATCH there, the THROW

in the process closure bound to RETURNER will throw to that CATCH, ignoring the
one in LOCK. Similarly, the THROW that RES performs was created underneath the
CATCH in LOCK, and so the process closure that throws to LOCKTAG returns from
the CATCH in LOCK.

10.1 Reality.

As mentioned earlier, a real implementation of Qlisp would supply an efficient locking
mechanism, and the details of a realistic locking protocol will be discussed later. We have
tried to keep the number of primitives down to see what would constitute a minimum
language.

11. Killing Processes

We’ve seen that a process can commit suicide, but is there any way to kill another
process? Yes; the idea is to force a process to commit suicide. Naturally, everything must
be set up correctly.

18

§ 11 Killing Processes

We’ll show a simple example of this ‘bomb’ technique.

Here is the entire code for this example:

1 (DEFUN TEST ()
2 (LET ((BOMBS ()))
3 (LET ((BOMB-HANDLER
4 (QLAMBDA T (TYPE ID MESSAGE)
5 (COND ((EQ TYPE ’BOMB)
6 (PRINT ‘(BOMB FOR ,ID))
7 (PUSH ‘(,ID . ,MESSAGE) BOMBS))
8 ((EQ TYPE ’KILL)
9 (PRINT ‘(KILL FOR ,ID))

10 (FUNCALL

11 (CDR (ASSQ ID BOMBS)))
12 T)))))
13 (QLET ’EAGER ((X
14 (CATCH ’QUIT (TESTER BOMB-HANDLER ’A)))
15 (Y
16 (CATCH ’QUIT (TESTER BOMB-HANDLER ’B))))
17 (SPAWN

18 (PROGN (DO ((I 10. (1− I)))
19 ((= I 0)
20 (PRINT ‘(KILLING A))
21 (BOMB-HANDLER ’KILL ’A ()))
22 (PRINT ‘(COUNTDOWN A ,I)))
23 (DO ((I 10. (1− I)))
24 ((= I 0)
25 (PRINT ‘(KILLING B))
26 (BOMB-HANDLER ’KILL ’B ()))
27 (PRINT ‘(COUNTDOWN B ,I)))))
28 (LIST X Y)))))

29 (DEFUN TESTER (BOMB-HANDLER LETTER)
30 (BOMB-HANDLER ’BOMB LETTER
31 (QLAMBDA T () (THROW ’QUIT LETTER)))

19

§ 11 Killing Processes

32 (DO ()(()) (PRINT LETTER)))

First we set up a process closure which will collect bombs and explode them. Line 2
defines the variable that will hold the bombs. A bomb is an ID and a piece of code.
Lines 3–12 define the bomb handler. It is a piece of code that takes a message type, an
ID, and a message It looks at the type; if the type is BOMB, then the message is a piece
of code. The ID/code pair is placed on the list, BOMBS. If the type is KILL, then the ID
is used to find the proper bomb and explode it.

Lines 13–28 demonstrate the use of the bomb-handler. Lines 14 and 16 are CATCH’s
that the bombs will kill back to. Two processes are created, each running TESTER.
TESTER sends a bomb to BOMB-HANDLER, which is a process closure that will
throw back to the appropriate CATCH. Because the process closure is created under one
of two CATCH’s, the THROW will kill the intermediate processes. The main body of
TESTER is an infinite loop that prints the second argument, which will either be the letter
A or the letter B.

The QLET on line 13 is eager. Unless something kills the two processes spawned
as argument calculation processes, neither X nor Y will ever receive values. But because
the QLET is eager, the SPAWN on line 17 will be evaluated. This SPAWN creates a
process closure that will kill the two argument processes.

The result of TEST is (LIST X Y), which will block while waiting for values until
the argument processes are killed.

The killing process (lines 18–27) counts down from 10, kills the first argument process,
counts down from 10 again, and finally kills the second argument process.

To kill the argument process, the BOMB-HANDLER is called with the message
type KILL and the name of the process as the ID. The BOMB-HANDLER kills a
process by searching the list, BOMBS, for the right bomb (which is a piece of code) and
then FUNCALLing that bomb.

Because a process closure is created for each call to TESTER (line 31), and because
one is spawned dynamically beneath the CATCH on line 14 and the other beneath the
CATCH on line 16, the BOMB-HANDLER will not be killed by the THROW. When
the process that is printing A is killed, the corresponding THROW throws A. Similarly
for the process printing B.

20

§ 11 Killing Processes

The value of TEST is (A B). Of course there is a problem with the code, which is that
the BOMB-HANDLER is not killed when TEST exits.

12. Eager Process Closures

We saw that EAGER is a useful value for the propositional parameter in QLET

applications, that is, in constructions of this form:

(QLET prop ((x1arg1)
...

(xn arg2))
. body)

But it may not be certain what use it has in the context of a process closure.

When a process closure of the form:

(QLAMBDA ’EAGER (lambda-list) . body)

is spawned, it is immediately run. And if it needs arguments or a return address to be
supplied, it waits.

Suppose we have a program with two distinct parts: The first part takes some time to
complete and the second part takes some large fraction of that time to initialize, at which
point it requires the result of the first part. The easiest way to accomplish this is to start
an eager process closure, which will immediately start running its initialization. When the
first part is ready to hand its result to the process closure, it simply invokes the process
closure.

Here is an example of this overlapping of a lengthy initialization with a lengthy com-
putation of an argument:

(LET ((F (QLAMBDA ’EAGER (X)
[Lengthy Initialization]
(OPERATE-ON X))))

(F [Lengthy computation of X]))

21

§ 12 Eager Process Closures

There are other ways to accomplish this effect in this language, but this is the most
flexible technique.

13. Software Pipelining

Multiprocessing programming languages must support the styles of programming that
are natural to the programmer, and they must be able to express all of the forms of concur-
rency that exist. In this section we will introduce a style of programming, called software
pipelining, which can produce speedups in sequential code under certain circumstances.
Moreover, sequential code can be easily transformed into pipelined code.

13.1 Pipelining

Pipelining is a technique used in computer architectures to increase the execution
speed of programs. The idea is that while one instruction is being executed the next in-
struction in the instruction stream can be decoded. Thus, the execution of one instruction
can overlap the execution of another. This is possible because the execution of an instruc-
tion can be broken up into independent stages. These stages are implemented as separate
pieces of hardware that perform the steps in each stage.

There are several complications with this scheme as far as the hardware is concerned.
First, if the second instruction requires a result from the first instruction, and if the result
is not ready for use from the first instruction when the second instruction wants to use it,
then the pipeline ‘blocks.’ This delay can cause the throughput of the pipeline to decrease,
and sometimes this decrease can be significant.

Second, if the first instruction is a conditional jump, then perhaps the address to
which control will pass might not be known when the second instruction is being fetched.
This will result in a pipeline blockage also. This type of complication is similar to the
first—simply consider the address from which the the next instruction is to be fetched as
a result of the current instruction. Normally this address—the program counter or PC—is
implicitly known to be the next sequential PC after that of the current instruction.

The effect of pipelining is that programs that are not inherently parallel can enjoy
some degree of parallelism and, hence, can run faster on a pipelined architecture than on
the same architecture without pipelining. There is a window of instructions such that if
one instruction within that window depends on the result of a second instruction within
that window, then we might expect the pipeline to block. This window is certainly no
larger than the length of the pipeline, and this window slides along the stream of executed

22

§ 13 Software Pipelining

instructions. For most pipelined computers the window is smaller than the length of the
pipeline.

The hope is that the window is small enough and the dependencies within that window
are rare enough that there will not be a significant slowdown from the ideal situation, which
is a program with no dependencies within any window.

13.2 Software Pipelining

Software pipelining is the adaptation of the idea of hardware pipelining to Qlisp. We
will see that often programs can be pipelined when they cannot be made fully parallel, and
we will also see that dependencies between stages of a software pipeline can be implemented
using a locking mechanism with certain characteristics.

There are two sorts of parallelism in Qlisp: 1) the true parallelism that derives from
the parallel evaluation of arguments in a QLET, and 2) the unstructured concurrency of
process-closure invocation, particularly when the invocation is in a value-ignoring situation.
In the latter case, a number of processes are created and messages are passed among them,
causing some pattern of concurrent activity.

Software pipelining is a subspecies of the latter type of parallelism, but it is a struc-
tured subspecies. Suppose that there is a computation which is inherently sequential and
which must be performed repeatedly. In fact, suppose that this computation takes a cer-
tain set of arguments and that we intend to stream sets of arguments to that computation
at the fastest possible rate. If that computation is expressed as a process closure, then
the second set of arguments cannot be processed until the first set has been completely
processed. To apply software pipelining to that computation, we break up that computa-
tion into stages such that the amount of information that needs to passed from one stage
to the next is manageable; each stage is a process closure. Because each stage will be
smaller than the entire original computation, the second set of arguments can enter the
computation sooner after the first set than in the original computation.

An example of an inherently sequential computation is one which performs some
actions on a shared resource, such as a global data structure.

13.2.1 Simple Example

We will present a simple example of a computation along with a pipelined imple-
mentation of it. This example is designed to explain the concept of software pipelining;
the example is not an example of a computation that requires software pipelining—much

23

§ 13 Software Pipelining

better speedups can be achieved with true parallelism or even with a reformulation of the
algorithm than with pipelining.

The example is polynomial evaluation: Given a polynomial, P (x), and a value, v, for
x, produce P (v). Let

P (x) = 5x4 + 4x3 + 3x2 + 2x + 1,

then using Horner’s rule we have that,

P (x) = (((5x + 4)x + 3)x + 2)x + 1

.

We can define four functions—F1, F2, F3, and F4—such that

P (x) = F4(x, F3(x, F2(x, F1(x)))),

as follows:

(DEFUN F1 (X)
(+ (∗ 5 X) 4))

(DEFUN F2 (X V)
(+ (∗ V X) 3))

(DEFUN F3 (X V)
(+ (∗ V X) 2))

(DEFUN F4 (X V)
(+ (∗ V X) 1))

These functions define stages of the computation of P . Each stage is largely indepen-
dent of the others aside from the values x and v which are passed as arguments, and each

24

§ 13 Software Pipelining

stage does about the same amount of computation as the others. Given these definitions,
the pipelined version of the original polynomial evaluation function can be written:

(DEFUN HORNER-STREAM ()
(QCATCH ’HST
(LABELS ((P1 (QLAMBDA T (X)

(P2 (+ (∗ 5 X) 4) X)
T))

(P2 (QLAMBDA T (X V)
(P3 X (+ (∗ V X) 3))
T))

(P3 (QLAMBDA T (X V)
(P4 X (+ (∗ V X) 2))
T))

(P4 (QLAMBDA T (X V)
(+ (∗ V X) 1))))

(P1 x1)(P1 x2)(P1 x3). . .)))

The QCATCH will kill all of the processes when HORNER-STREAM is exited, but
only after each of the process closures, P1–P4, has finished its last computation. LABELS

is a construct for defining mutually recursive functions, and each one of P1–P4 is bound to
a process closure. P1 corresponds to F1, P2 corresponds to F2, P3 corresponds to F3, and
P4 corresponds to F4. The next stage of each pipe is called in a value-ignoring position.

The ellipsis [. . .] is a sequence of invocations of P1 for various arguments. Each process,
P1–P4, is presumed to be running on a different processor.

Imagine a stream of arguments to P1, v1 . . . vn. Suppose v1 is passed to P1 and then
immediately v2 is passed. P1 cannot process v2 until v1 has been processed; as soon as
5x + 4 has been passed on to P2, P1 can accept v2, and so on. When P4 is processing the
final stage of the computation of P (v1), P3 can be processing the third stage of P (v2), P2
can be processing the second stage of P (v3), and P1 can be processing the first stage of
P (v4).

The straightforward code for P is:

25

§ 13 Software Pipelining

(DEFUN HORNER ()
(LABELS ((P1 (LAMBDA (X)

(+ 1 (∗ X (+ 2 (∗ X (+ 3 (∗ X (+ 4 (∗ 5 X)))))))))))
(P1 x1)(P1 x2)(P1 x3). . .)))

Using a simple performance simulator for Qlisp [Gabriel 1984], when 40 requests are
streamed through HORNER and HORNER-STREAM, HORNER-STREAM is approxi-
mately 3.8 times faster than HORNER, compared with the theoretical maximum of 4.0.

Of course, there are better ways to speed up this particular program, but the tech-
nique is the important point. The technique enables speedups in sequential code, and
these speedups can achieved by applying the software pipelining technique rather than by
discovering the, possibly, clever parallel algorithm.

13.2.2 Discussion

There are several things to note about this example and the technique. First, the
amount of computation per process closure is quite small, and the performance of the
pipeline will depend on the function-call overhead in HORNER-STREAM which is not
present in HORNER. Note that because process-closures are invoked to move control from
one stage of the pipe to the next, function-call overhead is, in reality, message-passing
overhead.

Second, the software pipelining style of programming is very much like that used
in continuation-passing style. With continuation passing, an additional function—the
continuation—is passed as an argument to each function. When a function computes
a value, it applies the continuation to that value in a tail-recursive position rather than
returning to its caller. With software pipelining, the continuation for each stage of the
pipe is the next stage of the pipe, if there is one.

The last stage of a pipeline can either invoke some other process, or else that stage
could invoke a continuation that had been explicitly passed to it.

Third, this example does not contain any global or special variables. For this technique
to be useful, it ought to be possible to use it in the presence of global variables. Of
course, heavy use of globals will diminish the performance advantages, much as instruction
dependencies limit the effectiveness of a pipeline in a computer.

26

§ 13 Software Pipelining

13.2.3 Global Variable Example

In the simple example of polynomial evaluation, all of the information that is passed
among the stages is passed from one stage to the next as arguments. Therefore, we
can say that all of the information flow is in the forward direction—each stage can only
receive information from the preceeding stages. With global variables it is possible for this
information to be passed in the backward direction.

One use of global variables is for one invocation of a function to communicate with
a later invocation. The first function can store some value in a variable whose extent is
indefinite—a global variable. A later invocation of that function (or some other function)
can read that value and act on it.

Global variables are used quite often to record a state for a function. In Lisps that do
not support closures, a programmer will often construct a closure equivalent by packaging
the code for a function with an explicit environment, which is simply a set of global
variables. In a closure, maintaining an environment—a state—is simply an example of one
function invocation communicating with a later one.

In the instruction stream in a computer, an early instruction can write some value
into a memory location or a register, and a later instruction can read and use that value.
When this happens within the pipeline window, as we discussed earlier, the pipeline may
block, and performance may be lost.

Similarly, we can define a software pipeline in which later stages of the pipe can com-
municate with earlier stages—early arguments to the pipeline can influence the behavior
of the pipeline on later arguments.

To handle global variables, we use vectors in place of variables and a locking mechanism
to keep reads and writes of the global variables straight. We will demonstrate the technique
with a variant of the polynomial example:

P (x) = 5x4 + 4x3 + 3x2 + Qx + 1

.

Q is a global variable, and let us assume that after each evaluation of P , Q is incremented.
Thus, the HORNER code should become:

27

§ 13 Software Pipelining

(DEFUN HORNER ()
(LABELS

((P1 (LAMBDA (X)
(LET ((ANS (+ 1 (∗ X (+ Q (∗ X (+ 3 (∗ X (+ 4 (∗ 5 X))))))))))

(SETQ Q (1+ Q))
ANS))))

. . .))

In this new version of HORNER, an early invocation of the code will communicate
with a later invocation by changing the value of Q.

For the sake of the example, we will stipulate that the global variable, Q, must be
updated after the computation of the value of the polynomial has been completed, though
there is no apparent reason for this in the code. This will allow us to see how a variable
might be handled at various stages in the pipeline.

Because there are four stages in the pipe, we will substitute a 4-long vector for Q. We
will call an index into this vector a ‘slice of Q.’ Each slice is associated with one complete
flow of control through the pipeline. That is, each time a value is passed through the pipe
in order to evaluate the polynomial once, a slice of Q is assigned to that computation.

To allocate the slice, we will create a lock for each slice of Q. In fact, there will be
a 4-long vector that holds the locks. Earlier we showed that locks could be implemented
with only those primitives described earlier. However, Qlisp directly supports a more
streamlined locking mechanism.

In Qlisp locks are first-class citizens and can be passed around as any other Lisp
object can. Locks can be created, gotten, and released. One interesting aspect of Qlisp
locks is that they can be named. Most of the time anonymous locks are sufficient, and such
locks are granted in the order in which requests are received. A lock is a Qlisp structure
with several fields: the owner field, the request-queue field, and the name field. Locks
are created and pointers to them are passed exactly as with other Lisp objects. In order
to request a lock, a process must have a pointer to it; if a process requests a lock and it
already has an owner, then that requestor is put in the queue for that lock. If there is no
owner, then the name of the lock comes into play.

When a lock is owned by a certain process, that process might wish to pass the lock

28

§ 13 Software Pipelining

to a particular process. To do this, the owner sets the name of the lock to some particular
value.

A lock which has a name can only be granted to a process that asks for that lock by
its name. If several processes request a named lock, then the first process that asks for
that lock by its name gets it. If a request for a named lock is placed, and the lock has no
name (at that time), then the request is granted regardless of what name was supplied by
the requestor.

Named locks will solve a difficult problem in pipelines with global variables.

This is the new code for HORNER-STREAM:

1 (DEFUN HORNER-STREAM ()
2 (QCATCH ’HST
3 (LABELS ((P1 (LET ((N 0)
4 (ID (NCONS ()))
5 (NEXT-ID (NCONS ())))
6 (QLAMBDA T (X)
7 (LET ((LOCK (GET-LOCK (LOCK N))))
8 (P2 X (+ (∗ 5 X) 4) LOCK N ID NEXT-ID)
9 (SETQ ID NEXT-ID)

10 (SETQ NEXT-ID (NCONS ()))
11 (SETQ N (REMAINDER (1+ N) 4))
12 T))
13 (P2 (QLAMBDA T (X V LOCK N ID NEXT-ID)
14 (P3 X (+ (∗ V X) 3) LOCK N ID NEXT-ID)
15 T))
16 (P3 (QLAMBDA T (X V LOCK N ID NEXT-ID)
17 (P4 X (+ (∗ V X) (GET-Q N ID)) LOCK N ID NEXT-ID)
18 T))
19 (P4 (QLAMBDA T (X V LOCK N ID NEXT-ID)
20 (LET ((ANS
21 (+ (∗ V X) 1)))
22 (SETF (ASET ∗QAR∗ N) (1+ (AREF ∗QAR∗ N)))
23 (SET-LOCK-NAME LOCK NEXT-ID)
24 (RELEASE-LOCK LOCK)

29

§ 13 Software Pipelining

25 ANS))))))
26 . . .)))

where GET-Q is defined as:

27 (DEFUN GET-Q (N ID)
28 (LET ((LOCK (GET-NAMED-LOCK ID (PREVIOUS-LOCK N))))
29 (LET ((Q (AREF ∗QAR∗ (PREVIOUS-INDEX N))))
30 (SETF (AREF ∗QAR∗ N) Q)
31 (SET-LOCK-NAME LOCK ())
32 (RELEASE-LOCK LOCK)
33 Q)))

where ∗QAR∗ holds the slices of Q.

N is a variable that is local to process P1 and whose values circulate among 0-1-2-3-
0. . .. As each new argument arrives at P1, the proper slice of Q and the correct lock are
selected by this N. When control is passed onto P2, the second pipe stage, N is incremented
(mod 4).

ID and NEXT-ID are variables that are local to process P1; ID is the name to be used
for the current lock, and NEXT-ID is the name for the next lock. These two variables are
initialized on lines 4 and 5. NCONS takes one argument and returns a list containing
that argument as its sole element. The idiom (NCONS ()) is frequently used to create a
unique pointer for use as a name.

There are 4 locks used to control access to the four slices of Q. Each of the 4 locks—one
for each stage—is initially given a null name.

The lock for the Nth slice of Q is grabbed at line 7, so that no other process has
access to that slice of Q until it is released with RELEASE-LOCK. Each time a lock is
grabbed at line 7, it has no name. The lock, along with the values of N, ID, and NEXT-ID,
are passed from stage to stage.

A process executing in stage P4 wants the next process in line to get a hold of the
value of Q it just wrote—no other process should be able to get to it first. Therefore, we
want to name the lock in such a way that this is inevitable. Consider the environments of

30

§ 13 Software Pipelining

the processes in question. From within stage P4, ID is the current name and NEXT-ID is
the name of the next process in line behind the one currently in P4 (lines 9 and 10). Thus,
the value of NEXT-ID in stage P4 is EQ to the value of ID in stage P3.

At line 23 the name of the lock for the Nth slice of Q is set to NEXT-ID. Because the
process in stage P4 has had control of this lock since that process started in stage P1, no
other process can have control of it, and now that the lock’s name has been set, there is
exactly one process that can get a hold of it—the process that asks for that name, which
is the process right behind the one in stage P4.

The process in stage P3 asks for the value of Q, using GET-Q, at line 17. In GET-Q
at line 28, the lock with ID as its name is requested. This will result in the process in stage
P3 getting the lock right after the process in stage P4 is through with it. In GET-Q, after
the value for Q written into the Nth slice of Q has been copied into the (N + 1)st(mod 4)
slice of Q (line 30), the name of the lock is set to () (line 31), and the lock is released.
Now any other process can grab this lock.

The worst case is that the reference to Q in P3 will need to wait until stage P4 of the
previous computation has released that slice; this will happen quite frequently. Also, the
amount of computation that goes into each stage is quite low compared with the amount of
computation that goes into maintaining the locks. The result is that HORNER-STREAM
is slower than HORNER on 40 computed values by a factor of approximately 1.7.

There are two factors which could improve the performance of pipelines that commu-
nicate among stages with global variables: 1) The frequency of interaction between pipe
stages using global variables could be decreased, and 2) the amount of computation per
pipe stage could be increased.

The frequency of global variable use as a determiner of the performance of a pipeline
is obvious. The amount of computation per stage as compared with the amount of com-
putation needed to maintain the locks can be shown to be a determiner of performance by
modifying HORNER and HORNER-STREAM so as to increase the amount of computa-
tion per pipe stage.

(DEFUN HORNER-STREAM ()
(QCATCH ’HST
(LABELS ((P1 (LET ((N 0)

(ID (NCONS ()))

31

§ 13 Software Pipelining

(NEXT-ID (NCONS ())))
(QLAMBDA T (X)
(LET ((LOCK (GET-LOCK (LOCK N))))

(P2 X (+ (∗ (DELAY 5) X) (DELAY 4))
LOCK N ID NEXT-ID)

(SETQ ID NEXT-ID)
(SETQ NEXT-ID (NCONS ()))
(SETQ N (REMAINDER (1+ N) 4))
T))

(P2 (QLAMBDA T (X V LOCK N ID NEXT-ID)
(P3 X (+ (∗ V X) (DELAY 3)) LOCK N ID NEXT-ID)
T))

(P3 (QLAMBDA T (X V LOCK N ID NEXT-ID)
(P4 X (+ (∗ V X) (DELAY (GET-Q N ID))) LOCK N ID NEXT-ID)
T))

(P4 (QLAMBDA T (X V LOCK N ID NEXT-ID)
(LET ((ANS

(+ (∗ V X) (DELAY 1))))
(INCR-GLOBAL N)
(SET-LOCK-NAME LOCK NEXT-ID)
(RELEASE-LOCK LOCK)
ANS))))))

. . .)))

where DELAY is a macro defined as:

(DEFMACRO DELAY (FORM)
‘(DO ((I ∗DELAY∗ (1− I)))

((ZEROP I) ,FORM)))

We can similarly modify HORNER. With ∗DELAY∗ set to 20, HORNER-STREAM
is faster than HORNER over 20 polynmial evaluations by a factor of approximately 2.2.

32

§ 13 Software Pipelining

13.3 Comparison with Other Techniques

Qlisp is essentially an asynchronous language—we assume several CPU’s attached to
a single address space, where each CPU can run several jobs (or processes) at once in a
timeshared mode. We do not assume that there is any explicit control of the scheduling of
processes outside of those implied by the language (locks and flow of data and control).

Because of this, Qlisp supports a style of parallelism that is quite different from both
systolic arrays and systolic-array-like mechanisms like the Bagel [Shapiro 1983]. There is
no network or grid of processors, and data/control is not shunted from one processor to
the next. Therefore, the use of locks is necessary to control access to globals.

Moreover, within each stage of a pipeline it is possible to use the full power of Qlisp
to achieve local speedups—each stage can exploit a high degree of parallelism within it.
This is not readily performed with any of the systolic-array-like techniques.

The examples we have shown have been coded using the underlying Qlisp mechanisms
without using any macros or other structuring. The code in each stage of the pipes
presented, along with the actions to deal with global variables within those stages, is so
stylized that macros are easily written to support software pipelining. This would shorten
and simplify the unreadable code we have been using for expository purposes.

The Qlisp programming environment supports a suite of such macros, and here is how
the second version of HORNER-STREAM is actually written:

(DEFUN HORNER-STREAM ()
(PIPELINE FOO ((Q 0))

((STAGE (X) X (+ (∗ 5 X) 4))
(STAGE (X V) X (+ (∗ V X) 3))
(STAGE (X V) X (+ (∗ V X) (GLOBAL-REF Q)))
(STAGE (X V) (+ (∗ V X) 1)

(SETF (GLOBAL-REF Q)
(1+ (GLOBAL-REF Q)))))

. . .))

In this formulation, each stage simply invokes the next; the form for a stage in the
pipe is:

33

§ 13 Software Pipelining

(STAGE <formal arguments> . <arguments to next stage>)

There is also a formulation in which pipe stages are explicitly named and can be
invoked by name. This allows one to write a pipeline which is a directed graph.

Software pipelining is also similar to stream processing, in which one process supplies
a stream of values to another. Software pipelining is different in that it is useful for
introducing concurrency to an existing serial program by breaking it up into a stream with
several stages. Thus, it is not only a technique that is useful for thinking about programs as
processes which produce or consume a sequence of values, but it is also useful for thinking
about increasing the running speed of a program.

This viewpoint allowed us to introduce software pipelining into programs which use
global variables to enable early invocations of a program to communicate with later invo-
cations.

14. Geometric Control Structures

In this section we will introduce a style of programming called geometric control struc-
turing.

Systolic arrays have been used extensively in numeric analysis computing. The idea
is that a network of computers organized as an array can be programmed to perform
operations—typically on arrays—by streaming data from several computers in the array
to a single computer. That single computer performs some operation on the data and
passes along its value to some other computer.

The advantage of this style of programming is that geometric intuition about the
structure of a computation can be brought to bear by the programmer to produce an
effective and clear program. If there is a multiprocessor whose interconnection structure
corresponds to the program structure, then there may be a performance advantage as well.

14.1 Motivation for Geometric Control Structures

The key observation about systolic arrays is that the control structure corresponds
very closely to the geometry (or topology) of the problem. Process closures were used to
define software pipelining; process closures can also be used to define any hierarchical or
heterarchical control structure.

34

§ 14 Geometric Control Structures

14.2 Data-Structure-resident Closures

The key idea is to allocate processes within a data structure. If this data structure is
global, then each process within the data structure is able to access other processes—that
is, any process can invoke any other process that it is able to access through the data
structure.

An example might be a 2-dimensional array, which could correspond to some physical
aspect of the problem the programmer wishes to solve. If the solution to the problem
requires that each element in the array have an associated process, which performs some
computation, then the programmer can store a process closure in each element in the array.
These process closures can incorporate communications capabilities to other elements in
the array, perhaps limited to nearby neighbors.

Once the problem is solved in its own terms, attention can be turned towards laying
the data structure of process closures down on the physical structure of the multiprocessor.
Perhaps the multiprocessor is itself a rectangular array and the mapping is simple. Perhaps
not. The key is to solve the problem without much concern for the geometry of the
underlying hardware, leaving the matching of the software architecture to the hardware
architecture until later.

Software pipelining can be seen as a simple example of this idea, with the underlying
data structure being a simple list. Systolic arrays can be viewed this way with some sort
of grid as the underlying data structure.

15. Conclusions

We have presented a new language for multiprocessing. A variant of Lisp, this lan-
guage features a unique and powerful diction for parallel programs. Parallel constructs are
expressed elegantly, and the language extensions are entirely within the spirit of Lisp.

Multiprocessors that support shared memory among processors are important, and
even some or all of the nodes in a distributed system should be multiprocessors of this
style. To achieve maximum performance we will need to pull every trick in the book, from
coarse-grained down to fine-grained parallelism. This language is a step in the direction of
achieving that goal by allowing programmers to easily express parallel algorithms.

35

§

References

[Gabriel 1982] Gabriel, R. P., Masinter, L. M. Performance of Lisp Systems, Proceedings
of the 1982 ACM Symposium on Lisp and Functional Programming, August 1982.

[Gabriel 1984] Gabriel, R. P., McCarthy, J. M., Queue-based Multiprocessor Lisp, Pro-
ceedings of the 1984 ACM Symposium on Lisp and Functional Programming, August
1984.

[Gabriel 1985] Gabriel, R. P., Performance and Evaluation of Lisp Systems, The
MIT Press, Cambridge, Massachusetts, 1985

[Halstead 1984] Halstead, Robert, MultiLisp, Proceedings of the 1984 ACM Symposium
on Lisp and Functional Programming, August 1984.

[Smith 1978] Smith, Burton J., A Pipelined, Shared Resource MIMD Computer in Pro-

ceedings of the International Conference on Parallel Processors, 1978.

[Steele 1978] Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Revised Report on
SCHEME: A Dialect of LISP, AI Memo 452, Massachusetts Institute of Technology
Artificial Intelligence Laboratory, Cambridge, Massachusetts, January, 1978.

[Steele 1984] Steele, Guy Lewis Jr. et. al. Common Lisp Reference Manual, Digital
Press, 1984.

[Sussman 1975] Sussman, Gerald Jay, and Steele, Guy Lewis Jr. SCHEME: An Inter-
preter for Extended Lambda Calculus, Technical Report 349, Massachusetts Institute
of Technology Artificial Intelligence Laboratory, Cambridge, Massachusetts, Decem-
ber, 1975.

36

